scholarly journals A New Multi-Person Pose Estimation Method Using the Partitioned CenterPose Network

2021 ◽  
Vol 11 (9) ◽  
pp. 4241
Author(s):  
Jiahua Wu ◽  
Hyo Jong Lee

In bottom-up multi-person pose estimation, grouping joint candidates into the appropriately structured corresponding instance of a person is challenging. In this paper, a new bottom-up method, the Partitioned CenterPose (PCP) Network, is proposed to better cluster the detected joints. To achieve this goal, we propose a novel approach called Partition Pose Representation (PPR) which integrates the instance of a person and its body joints based on joint offset. PPR leverages information about the center of the human body and the offsets between that center point and the positions of the body’s joints to encode human poses accurately. To enhance the relationships between body joints, we divide the human body into five parts, and then, we generate a sub-PPR for each part. Based on this PPR, the PCP Network can detect people and their body joints simultaneously, then group all body joints according to joint offset. Moreover, an improved l1 loss is designed to more accurately measure joint offset. Using the COCO keypoints and CrowdPose datasets for testing, it was found that the performance of the proposed method is on par with that of existing state-of-the-art bottom-up methods in terms of accuracy and speed.

2020 ◽  
Vol 34 (07) ◽  
pp. 11924-11931
Author(s):  
Zhongwei Qiu ◽  
Kai Qiu ◽  
Jianlong Fu ◽  
Dongmei Fu

Multi-person pose estimation aims to detect human keypoints from images with multiple persons. Bottom-up methods for multi-person pose estimation have attracted extensive attention, owing to the good balance between efficiency and accuracy. Recent bottom-up methods usually follow the principle of keypoints localization and grouping, where relations between keypoints are the keys to group keypoints. These relations spontaneously construct a graph of keypoints, where the edges represent the relations between two nodes (i.e., keypoints). Existing bottom-up methods mainly define relations by empirically picking out edges from this graph, while omitting edges that may contain useful semantic relations. In this paper, we propose a novel Dynamic Graph Convolutional Module (DGCM) to model rich relations in the keypoints graph. Specifically, we take into account all relations (all edges of the graph) and construct dynamic graphs to tolerate large variations of human pose. The DGCM is quite lightweight, which allows it to be stacked like a pyramid architecture and learn structural relations from multi-level features. Our network with single DGCM based on ResNet-50 achieves relative gains of 3.2% and 4.8% over state-of-the-art bottom-up methods on COCO keypoints and MPII dataset, respectively.


2021 ◽  
Vol 13 (4) ◽  
pp. 663
Author(s):  
Runze Fan ◽  
Ting-Bing Xu ◽  
Zhenzhong Wei

This article addresses the challenge of 6D aircraft pose estimation from a single RGB image during the flight. Many recent works have shown that keypoints-based approaches, which first detect keypoints and then estimate the 6D pose, achieve remarkable performance. However, it is hard to locate the keypoints precisely in complex weather scenes. In this article, we propose a novel approach, called Pose Estimation with Keypoints and Structures (PEKS), which leverages multiple intermediate representations to estimate the 6D pose. Unlike previous works, our approach simultaneously locates keypoints and structures to recover the pose parameter of aircraft through a Perspective-n-Point Structure (PnPS) algorithm. These representations integrate the local geometric information of the object and the topological relationship between components of the target, which effectively improve the accuracy and robustness of 6D pose estimation. In addition, we contribute a dataset for aircraft pose estimation which consists of 3681 real images and 216,000 rendered images. Extensive experiments on our own aircraft pose dataset and multiple open-access pose datasets (e.g., ObjectNet3D, LineMOD) demonstrate that our proposed method can accurately estimate 6D aircraft pose in various complex weather scenes while achieving the comparative performance with the state-of-the-art pose estimation methods.


2020 ◽  
Vol 34 (07) ◽  
pp. 13033-13040 ◽  
Author(s):  
Lu Zhou ◽  
Yingying Chen ◽  
Jinqiao Wang ◽  
Hanqing Lu

In this paper, we propose a progressive pose grammar network learned with Bi-C3D (Bidirectional Convolutional 3D) for human pose estimation. Exploiting the dependencies among the human body parts proves effective in solving the problems such as complex articulation, occlusion and so on. Therefore, we propose two articulated grammars learned with Bi-C3D to build the relationships of the human joints and exploit the contextual information of human body structure. Firstly, a local multi-scale Bi-C3D kinematics grammar is proposed to promote the message passing process among the locally related joints. The multi-scale kinematics grammar excavates different levels human context learned by the network. Moreover, a global sequential grammar is put forward to capture the long-range dependencies among the human body joints. The whole procedure can be regarded as a local-global progressive refinement process. Without bells and whistles, our method achieves competitive performance on both MPII and LSP benchmarks compared with previous methods, which confirms the feasibility and effectiveness of C3D in information interactions.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ying Miao ◽  
Danyang Shao ◽  
Zhimin Yan

In this paper, we analyze the location-following processing of the image by successive approximation with the need for directed privacy. To solve the detection problem of moving the human body in the dynamic background, the motion target detection module integrates the two ideas of feature information detection and human body model segmentation detection and combines the deep learning framework to complete the detection of the human body by detecting the feature points of key parts of the human body. The detection of human key points depends on the human pose estimation algorithm, so the research in this paper is based on the bottom-up model in the multiperson pose estimation method; firstly, all the human key points in the image are detected by feature extraction through the convolutional neural network, and then the accurate labelling of human key points is achieved by using the heat map and offset fusion optimization method in the feature point confidence map prediction, and finally, the human body detection results are obtained. In the study of the correlation algorithm, this paper combines the HOG feature extraction of the KCF algorithm and the scale filter of the DSST algorithm to form a fusion correlation filter based on the principle study of the MOSSE correlation filter. The algorithm solves the problems of lack of scale estimation of KCF algorithm and low real-time rate of DSST algorithm and improves the tracking accuracy while ensuring the real-time performance of the algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qidong Du

In the process of multiperson pose estimation, there are problems such as slow detection speed, low detection accuracy of key point targets, and inaccurate positioning of the boundaries of people with serious occlusion. A multiperson pose estimation method using depthwise separable convolutions and feature pyramid network is proposed. Firstly, the YOLOv3 target detection algorithm model based on the depthwise separable convolution is used to improve the running speed of the human body detector. Then, based on the improved feature pyramid network, a multiscale supervision module and a multiscale regression module are added to assist training and to solve the difficult key point detection problem of the human body. Finally, the improved soft-argmax method is used to further eliminate redundant attitudes and improve the accuracy of attitude boundary positioning. Experimental results show that the proposed model has a score of 73.4% in AP on the 2017 COCO test-dev dataset, and it scored 86.24% on [email protected] on the MPII dataset.


2020 ◽  
Vol 34 (07) ◽  
pp. 11354-11361
Author(s):  
Jia Li ◽  
Wen Su ◽  
Zengfu Wang

We rethink a well-known bottom-up approach for multi-person pose estimation and propose an improved one. The improved approach surpasses the baseline significantly thanks to (1) an intuitional yet more sensible representation, which we refer to as body parts to encode the connection information between keypoints, (2) an improved stacked hourglass network with attention mechanisms, (3) a novel focal L2 loss which is dedicated to “hard” keypoint and keypoint association (body part) mining, and (4) a robust greedy keypoint assignment algorithm for grouping the detected keypoints into individual poses. Our approach not only works straightforwardly but also outperforms the baseline by about 15% in average precision and is comparable to the state of the art on the MS-COCO test-dev dataset. The code and pre-trained models are publicly available on our project page1.


2015 ◽  
Vol 8 (1) ◽  
pp. 272-275
Author(s):  
Lan Zhang ◽  
Dan Yu ◽  
Caihong Zhang ◽  
Weidong Zhang

Currently, the forest biomass energy development is at an initial stage and the estimation method for the forest biomass energy resource reserve is to be unified and refined although there is a great value and potential in the development and utilization of forest biomass energy in China. Based on the existing studies, the present paper analyzes the origins and types of forest biomass energy resources in the perspective of sustainable forestry management, constructs the estimation model using a bottom-up approach, and estimates the total existing forest biomass energy resource reserve in China based on the data of the 7th Forest Resource Survey. The estimation method and the calculation results provide the important theoretical ground for promoting the rational development of forest biomass energy in China.


Sign in / Sign up

Export Citation Format

Share Document