scholarly journals Variability in the Sea Surface Temperature Gradient and Its Impacts on Chlorophyll-a Concentration in the Kuroshio Extension

2021 ◽  
Vol 13 (5) ◽  
pp. 888
Author(s):  
Yuntao Wang ◽  
Rui Tang ◽  
Yi Yu ◽  
Fei Ji

Sixteen years of satellite observational data in the Northwestern Pacific Ocean are used to describe the variability in the sea surface temperature (SST) gradient and its impact on chlorophyll-a concentrations (Chl-a). Spatially, a meridional dependence is identified in which the SST gradient increases to the north in association with elevated Chl-a. Temporally, the seasonal variability shows a large SST gradient and high Chl-a in winter and spring, while the SST gradient and Chl-a are much lower in summer. The seasonal variability in Chl-a leads the variability in the SST gradient by one month. A significant correlation between the SST gradient and Chl-a in the anomalous field is obtained only in the western section of the Kuroshio extension (KE) and the highest correlation is identified without any lags. An index for the section is defined as the proportion of the number of times that the SST gradient magnitude is anomalously large in each year, and the index is highly related to the stability of the KE and has a prominent influence on Chl-a in the region. An anomalously large positive (negative) SST gradient magnitude occurs when the KE is unstable (stable) and the corresponding Chl-a is high (low).

Author(s):  
R. Shunmugapandi ◽  
S. Gedam ◽  
A. B. Inamdar

Abstract. Ocean surface phytoplankton responses to the tropical cyclone (TC)/storms have been extensively studied using satellite observations by aggregating the data into a weekly or bi-weekly composite. The reason behind is the significant limitations found in the satellite-based observation is the missing of valid data due to cloud cover, especially at the time of cyclone track passage. The data loss during the cyclone is found to be a significant barrier to efficiently investigate the response of chl-a and SST during cyclone track passage. Therefore it is necessary to rectify the above limitation to effectively study the impact of TC on the chlorophyll-a concentration (chl-a) and the sea surface temperature (SST) to achieve a complete understanding of their response to the TC prevailed in the Arabian Sea. Intending to resolve the limitation mentioned above, this study aims to reconstruct the MODIS-Aqua chl-a, and SST data using Data Interpolating Empirical Orthogonal Function (DINEOF) for all the 31 cyclonic events occurred in the Arabian Sea during 2003-2018 (16 years). Reconstructed satellite retrieved data covering all the cyclonic events were further used to investigate the chl-a and SST dynamics during TC. From the results, the exciting fact has been identified that only two TC over the eastern-AS were able to induce phytoplankton bloom. On investigating this scenario using sea surface temperature, it was disclosed that the availability of nutrients decides the suitable condition for the phytoplankton to proliferate in the surface ocean. Relevant to the precedent criterion, the results witnessed that the 2 TC (Phyan and Ockhi cyclone) prevailed in the eastern AS invoked a suitable condition for phytoplankton bloom. Other TC found to be less provocative either due to less intensity, origination region or the unsuitable condition. Thereby, gap-free reconstructed daily satellite-derived data efficiently investigates the response of bio-geophysical parameters during cyclonic events. Moreover, this study sensitised that though several TC strikes the AS, only two could impact phytoplankton productivity and SST found to highly consistent with the chl-a variability during the cyclone passage.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Lianxin Zhang ◽  
Changlong Guan ◽  
Chunjian Sun ◽  
Siyu Gao ◽  
Shaomei Yu

A one-dimensional turbulent model is used to investigate the effect of sea spray mediated turbulent fluxes on upper ocean temperature during the passage of typhoon Yagi over the Kuroshio Extension area in 2006. Both a macroscopical sea spray momentum flux algorithm and a microphysical heat and moisture flux algorithm are included in this turbulent model. Numerical results show that the model can well reproduce the upper ocean temperature, which is consistent with the data from the Kuroshio Extension Observatory. Besides, the sea surface temperature is decreased by about 0.5°C during the typhoon passage, which also agrees with the sea surface temperature dataset derived from Advanced Microwave Scanning Radiometer for the Earth Observing and Reynolds. Diagnostic analysis indicates that sea spray acts as an additional source of the air-sea turbulent fluxes and plays a key role in increasing the turbulent kinetic energy in the upper ocean, which enhances the temperature diffusion there. Therefore, sea spray is also an important factor in determining the upper mixed layer depth during the typhoon passage.


1999 ◽  
Vol 56 (6) ◽  
pp. 973-983 ◽  
Author(s):  
Masayuki Noto ◽  
Ichiro Yasuda

The relationship between the population size of the Japanese sardine, Sardinops melanostictus, and sea surface temperature (SST) from 1979 to 1994 was studied. Significant positive correlations were found between the natural mortality coefficient during the period from the postlarval stage to age 1 and winter-spring SST in the Kuroshio Extension and its southern recirculation area (30-35°N, 145-180°E). That is, higher (lower) SST over the possible migration route corresponded to higher (lower) mortality rate. This result is consistent with the high mortality and low population size for the high-SST period of the 1950's and 1960's and the population increase during the low-SST period of the 1970's and 1980's due to a decrease in mortality. The population decline after 1988 possibly occurred as a result of the abrupt increase in SST since 1988 in the Kuroshio Extension region and suggests a close relationship between interdecadal climate-ocean variability and sardine population size. This may also explain the relationship between biomass size and distribution area.


Author(s):  
Michelia Mashita ◽  
Jonson Lumban-Gaol

We analysed the variability of sea surface temperature (SST) and chlorophyll-a concentration (Chl-a) in the eastern Indian Ocean (EIO). We used monthly mean Chl-a and SST data with a 4-km spatial resolution derived from Level-3 Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) distributed by the Asia-Pacific Data-Research Center (APDRC) for the period 2002–2017. Wavelet analysis shows the annual and interannual variability of SST and Chl-a concentration in the EIO. The annual variability of SST and Chl-a is influenced by monsoon systems. During a southeast monsoon, SST falls while Chl-a increases due to upwelling. The annual variability of SST and Chl-a is also influenced by the Indian Ocean Dipole (IOD). During positive phases of the IOD (2006, 2012 and 2015), there was more intense upwelling in the EIO caused by the negative anomaly of SST and the positive anomaly of Chl-a concentration.


2020 ◽  
Vol 12 (13) ◽  
pp. 2150
Author(s):  
Andrea Corredor-Acosta ◽  
Náyade Cortés-Chong ◽  
Alberto Acosta ◽  
Matias Pizarro-Koch ◽  
Andrés Vargas ◽  
...  

The analysis of synoptic satellite data of total chlorophyll-a (Chl-a) and the environmental drivers that influence nutrient and light availability for phytoplankton growth allows us to understand the spatio-temporal variability of phytoplankton biomass. In the Panama Bight Tropical region (PB; 1–9°N, 79–84°W), the spatial distribution of Chl-a is mostly related to the seasonal wind patterns and the intensity of localized upwelling centers. However, the association between the Chl-a and different physical variables and nutrient availability is still not fully assessed. In this study, we evaluate the relationship between the Chl-a and multiple physical (wind, Ekman pumping, geostrophic circulation, mixed layer depth, sea level anomalies, river discharges, sea surface temperature, and photosynthetically available radiation) and chemical (nutrients) drivers in order to explain the spatio-temporal Chl-a variability in the PB. We used satellite data of Chl-a and physical variables, and a re-analysis of a biogeochemical product for nutrients (2002–2016). Our results show that at the regional scale, the Chl-a varies seasonally in response to the wind forcing and sea surface temperature. However, in the coastal areas (mainly Gulf of Panama and off central-southern Colombia), the maximum non-seasonal Chl-a values are found in association with the availability of nutrients by river discharges, localized upwelling centers and the geostrophic circulation field. From this study, we infer that the interplay among these physical-chemical drivers is crucial for supporting the phytoplankton growth and the high biodiversity of the PB region.


2021 ◽  
Vol 7 ◽  
Author(s):  
Toru Miyama ◽  
Shoshiro Minobe ◽  
Hanako Goto

The sea surface temperature (SST) of the Oyashio region in boreal summer abruptly increased in 2010 and high summertime SST repeated every year until 2016. Observations and an ocean reanalysis show that this marine heatwave occurred not only at the surface but also at deeper depths down to 200 m. Furthermore, salinity in summer also increased in parallel with the temperature. The rises in temperature and salinity indicate the strengthening of the Kuroshio water influence. The sea surface height and velocity show that the southward intrusion of the Oyashio near the coast in summer weakened from 2010 accompanied by an increase in anticyclonic eddies from the Kuroshio Extension. The much more frequent existence of anticyclonic eddies to the east of the first intrusion of the Oyashio in summer is closely associated with the weakening of the first intrusion and the strengthening of the second intrusion. It is suggested that the rise in the water temperature could increase a catch of yellowtail (Seriola quinqueradiata) in northern Japan.


Sign in / Sign up

Export Citation Format

Share Document