scholarly journals Assessing the Effects of Land Cover Land Use Change on Precipitation Dynamics in Guangdong–Hong Kong–Macao Greater Bay Area from 2001 to 2019

2021 ◽  
Vol 13 (6) ◽  
pp. 1135
Author(s):  
Xinghan Wang ◽  
Peitong Cong ◽  
Yuhao Jin ◽  
Xichun Jia ◽  
Junshu Wang ◽  
...  

The change of spatial and temporal distribution of precipitation has an important impact on urban water security. The effect of land cover land use change (LCLUC) on the spatial and temporal distribution of precipitation needs to be further studied. In this study, transfer matrix, standard deviation ellipse and spatial autocorrelation analysis techniques were used. Based on the data of land cover land use and precipitation, this paper analyzed the land cover land use change and its influence on the spatial and temporal distribution pattern of precipitation in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA). The results showed that from 2001 to 2019, the area of cropland, water, barren, forest/grassland in the GBA decreased by 44.03%, 8.05%, 50.22%, 0.43%, respectively, and the area of construction land increased by 20.05%. The precipitation in the GBA was mainly concentrated in spring and summer, and the precipitation in spring tended to increase gradually, while the precipitation in summer tended to decrease gradually, while the precipitation in autumn and winter has no obvious change. It was found that with the change of land cover land use, the spatial distribution of precipitation also changed. Especially in the areas where the change of construction land was concentrated, the spatial distribution of precipitation changed most obviously.

2022 ◽  
Vol 9 (2) ◽  
pp. 3293-3305
Author(s):  
Fajar Yulianto ◽  
Muhammad Rokhis Khomarudin ◽  
Eddy Hermawan ◽  
Nunung Puji Nugroho ◽  
Galdita Aruba Chulafak ◽  
...  

In Indonesia, flooding is one of the natural hazards that often occurs during the rainy season. Surface runoff coefficient values are an essential indicator of the supply of regional water resources. The smaller the surface runoff value, the greater the water storage in the ground, and the smaller surface was running water. This study analyses the spatial and temporal distribution of the estimated surface runoff caused by land use/land cover changes in the upstream Citarum watershed. The study area is located in the upstream Citarum watershed, West Java, Indonesia. The site has a long history of flooding and various complex environmental problems. The geographic Information System method was used as a tool in analyzing the spatially and temporally. The research result shows that there has been a change in land cover in several periods of the year in the Citarum upstream watershed. The occurrence of the LULC phenomenon positively affects the surface runoff coefficient. The increasing area of Built land and plantation in the Citarum upstream watershed will further increase the surface runoff coefficient and, in the end, will potentially increase the surface runoff and contribute to flooding in the Bandung basin. This study results can be used to provide input in determining the direction and policies for watershed management, taking into account the varying characteristics of each subwatershed.


2021 ◽  
Vol 13 (5) ◽  
pp. 1008
Author(s):  
Linlin Wu ◽  
Caige Sun ◽  
Fenglei Fan

The intensity of human activity, habitat loss and habitat degradation have significant impacts on biodiversity. Habitat quality plays an important role in spatial dynamics when evaluating fragmented landscapes and the effectiveness of biodiversity conservation. This study aimed to evaluate the status and characteristic variation in habitat quality to analyze the underlying factors affecting habitat quality in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Here, we applied Kendall’s rank correlation method to calculate the sensitivity of habitat types to threat factors for the Integrated Valuation of Ecosystem Services and Tradeoffs habitat quality (InVEST-HQ) model. The spatiotemporal variation in habitat quality of the GBA in the period 1995–2015 was estimated based on the InVEST-HQ model. We analyzed the characteristic habitat quality using different ecosystem classifications and at different elevation gradients. Fractional vegetation cover, the proportion of impervious surface, population distribution and gross domestic product were included as the effect factors for habitat quality. The correlation between the effect factors and habitat quality was analyzed using Pearson’s correlation tests. The results showed that the spatial pattern of habitat quality decreased from fringe areas to central areas in the GBA, that the forest ecosystem had the highest value of habitat quality, and that habitat quality increased with elevation. In the period from 1995 to 2015, habitat quality declined markedly and this could be related to vegetation loss, land use change and intensity of human activity. Built-up land expansion and forest land fragmentation were clear markers of land use change. This study has great significance as an operational approach to mitigating the tradeoff between natural environment conservation and rapid economic development.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1955
Author(s):  
Mingxi Zhang ◽  
Guangzhi Rong ◽  
Aru Han ◽  
Dao Riao ◽  
Xingpeng Liu ◽  
...  

Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.


2021 ◽  
Vol 13 (13) ◽  
pp. 7044
Author(s):  
Dawei Wen ◽  
Song Ma ◽  
Anlu Zhang ◽  
Xinli Ke

Assessment of ecosystem services supply, demand, and budgets can help to achieve sustainable urban development. The Guangdong-Hong Kong-Macao Greater Bay Area, as one of the most developed megacities in China, sets up a goal of high-quality development while fostering ecosystem services. Therefore, assessing the ecosystem services in this study area is very important to guide further development. However, the spatial pattern of ecosystem services, especially at local scales, is not well understood. Using the available 2017 land cover product, Sentinel-1 SAR and Sentinel-2 optical images, a deep learning land cover mapping framework integrating deep change vector analysis and the ResUnet model was proposed. Based on the produced 10 m land cover map for the year 2020, recent spatial patterns of the ecosystem services at different scales (i.e., the GBA, 11 cities, urban–rural gradient, and pixel) were analyzed. The results showed that: (1) Forest was the primary land cover in Guangzhou, Huizhou, Shenzhen, Zhuhai, Jiangmen, Zhaoqing, and Hong Kong, and an impervious surface was the main land cover in the other four cities. (2) Although ecosystem services in the GBA were sufficient to meet their demand, there was undersupply for all the three general services in Macao and for the provision services in Zhongshan, Dongguan, Shenzhen, and Foshan. (3) Along the urban–rural gradient in the GBA, supply and demand capacity showed an increasing and decreasing trend, respectively. As for the city-level analysis, Huizhou and Zhuhai showed a fluctuation pattern while Jiangmen, Zhaoqing, and Hong Kong presented a decreasing pattern along the gradient. (4) Inclusion of neighborhood landscape led to increased demand scores in a small proportion of impervious areas and oversupply for a very large percent of bare land.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 501
Author(s):  
Xuege Wang ◽  
Fengqin Yan ◽  
Yinwei Zeng ◽  
Ming Chen ◽  
Bin He ◽  
...  

Extensive urbanization around the world has caused a great loss of farmland, which significantly impacts the ecosystem services provided by farmland. This study investigated the farmland loss due to urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China from 1980 to 2018 based on multiperiod datasets from the Land Use and Land Cover of China databases. Then, we calculated ecosystem service values (ESVs) of farmland using valuation methods to estimate the ecosystem service variations caused by urbanization in the study area. The results showed that 3711.3 km2 of farmland disappeared because of urbanization, and paddy fields suffered much higher losses than dry farmland. Most of the farmland was converted to urban residential land from 1980 to 2018. In the past 38 years, the ESV of farmland decreased by 5036.7 million yuan due to urbanization, with the highest loss of 2177.5 million yuan from 2000–2010. The hydrological regulation, food production and gas regulation of farmland decreased the most due to urbanization. The top five cities that had the largest total ESV loss of farmland caused by urbanization were Guangzhou, Dongguan, Foshan, Shenzhen and Huizhou. This study revealed that urbanization has increasingly become the dominant reason for farmland loss in the GBA. Our study suggests that governments should increase the construction of ecological cities and attractive countryside to protect farmland and improve the regional ESV.


2008 ◽  
pp. 515-520
Author(s):  
R Shibasaki ◽  
K Matsumura ◽  
W Wu ◽  
A Onishi ◽  
K Sugimoto

Sign in / Sign up

Export Citation Format

Share Document