scholarly journals Long-Term Subsidence Monitoring of the Alluvial Plain of the Scheldt River in Antwerp (Belgium) Using Radar Interferometry

2021 ◽  
Vol 13 (6) ◽  
pp. 1160
Author(s):  
Pierre-Yves Declercq ◽  
Pierre Gérard ◽  
Eric Pirard ◽  
Jan Walstra ◽  
Xavier Devleeschouwer

The coupled effects of climate change, sea-level rise, and land sinking in estuaries/alluvial plains prone to inundation and flooding mean that reliable estimation of land movements/subsidence is becoming more crucial. During the last few decades, land subsidence has been monitored by precise and continuous geodetic measurements either from space or using terrestrial techniques. Among them, the Persistent Scaterrer Interferometry (PSInSAR) technique is used on the entire Belgian territory to detect, map and interpret the identified ground movements observed since 1992. Here the research focuses on one of the biggest cities in Belgium that became the second European harbour with giant docks and the deepening of the Scheldt river allowing the navigation of the largest container vessels. The areas along the embankments of the Scheldt river and the harbour facilities are associated to Holocene fluviatile deposits overlain by recent landfills. These sedimentary deposits and human-made landfills are affected by important and ongoing land subsidence phenomena. The land subsidence process is highlighted by an annual average Line of Sight (LOS) velocity of about −3.4 mm/year during the years 1992–2001 (ERS1/2 datasets), followed by an annual average LOS velocity of about −2.71 mm/year and −2.11 mm/year, respectively, during the years 2003–2010 (ENVISAT) and 2016–2019 (Sentinel 1A). The Synthetic Aperture Radar (SAR) imagery data indicate a progressive decrease in the average annual velocities on a global scale independently of important local variations in different districts along the Scheldt river. On the contrary, the city centre and the old historic centre of Antwerp are not affected by negative LOS velocities, indicating stable ground conditions. A geological interpretation of this difference in settlement behaviour between the different areas is provided.

2021 ◽  
Vol 13 (5) ◽  
pp. 885
Author(s):  
Francesca Cigna ◽  
Deodato Tapete

The growing volume of synthetic aperture radar (SAR) imagery acquired by satellite constellations creates novel opportunities and opens new challenges for interferometric SAR (InSAR) applications to observe Earth’s surface processes and geohazards. In this paper, the Parallel Small BAseline Subset (P-SBAS) advanced InSAR processing chain running on the Geohazards Exploitation Platform (GEP) is trialed to process two unprecedentedly big stacks of Copernicus Sentinel-1 C-band SAR images acquired in 2014–2020 over a coastal study area in southern Italy, including 296 and 283 scenes in ascending and descending mode, respectively. Each stack was processed in the GEP in less than 3 days, from input SAR data retrieval via repositories, up to generation of the output P-SBAS datasets of coherent targets and their displacement histories. Use-cases of long-term monitoring of land subsidence at the Capo Colonna promontory (up –2.3 cm/year vertical and –1.0 cm/year east–west rate), slow-moving landslides and erosion landforms, and deformation at modern coastal protection infrastructure in the city of Crotone are used to: (i) showcase the type and precision of deformation products outputting from P-SBAS processing of big data, and the derivable key information to support value-adding and geological interpretation; and (ii) discuss potential and challenges of big data processing using cloud/grid infrastructure.


2016 ◽  
Vol 2 (7) ◽  
pp. 316-323 ◽  
Author(s):  
Elmira Khaksar Najafi ◽  
Hadi Faghihmaleki

Land subsidence is defined as gradually ground surface settlement in an aquifer due to the compaction of unconsolidated sedimentary deposits. Since in an aquifer, deposits consist of cohesive or non-cohesive alluvial soil layers. The consolidation theory cannot be explained as the only reason for land subsidence. According to the susceptibility of alluvial soils to suffusion, internal erosion is also considerable to enhance the rate of the local settlement. Suffusion is explained as a process of soil particle movement in the soil body due to the effect of seepage flow on it. The subsidence rate in southwest and south of Tehran in Iran is very considerable whereby some structures have suffered significant damages due to this phenomenon. In this research, the contribution of suffusion and land subsidence was investigated in damaged building located at Ghale Morghi Street in southwest of Tehran, as a case history. Because of the incapability of available methods, in this article, a probability pattern is also proposed using statistical analysis for determination the likelihood of internal instability in alluvial soils in regard to soil cohesiveness.


2019 ◽  
Vol 85 ◽  
pp. 07015 ◽  
Author(s):  
Alina Radutu ◽  
Radu Constantin Gogu

Land subsidence affects urban areas worldwide. Sometimes it could be driven by intensive groundwater withdrawal to assure different urban needs and functionalities. Some of these urban areas have a long history of subsidence that covers almost a century. The aim of this paper is to present the evolution of several urban areas affected by land subsidence, the methods used to monitor vertical displacements along the decades in relationship to the groundwater extraction associated to the urban expansion, and the mitigation techniques used for countering the effects of intensive groundwater withdrawal. Even the originally applied subsidence monitoring methods (such as geometric levelling) are still very sensitive, in terms of time consuming, covered area, and financial effort, these methods might be complemented by new methods based on Synthetic Aperture Radar Interferometry (InSAR). InSAR methods show also a significant progress during the last decades when considering the subsidence sensed order of magnitude.


Sign in / Sign up

Export Citation Format

Share Document