scholarly journals Concurrent Firing Light Detection and Ranging System for Autonomous Vehicles

2021 ◽  
Vol 13 (9) ◽  
pp. 1767
Author(s):  
Gunzung Kim ◽  
Imran Ashraf ◽  
Jeongsook Eom ◽  
Yongwan Park

We proposed a light detection and ranging (LIDAR) system that changes the measurement strategy from a LIDAR system of sequential emission and measuring method to a concurrent firing measuring method. The proposed LIDAR was a 3D scanning LIDAR method that consisted of 128 output channels in one vertical line in the measurement direction and concurrently measured the distance for each of these 128 channels. The scanning LIDAR emitted 128 laser pulse streams encoded by carrier-hopping prime code (CHPC) technology with identification and checksum. When the reflected pulse stream was received and demodulated, the emission channel could be recognized. This information could be used to estimate the time when the laser pulse stream was emitted and calculate the distance to the object reflecting the laser. By using the identification of the received reflected wave, even if several positions were measured at the same time, the measurement position could be recognized after the reception. Extensive simulations indicated that the proposed LIDAR could provide autonomous vehicles or autonomous walking robots with good distance images to recognize the environment ahead.

Author(s):  
Vinicius Conti da Costa ◽  
Bruno Ziegler Haselein ◽  
Filipe Barbosa Veras ◽  
Manoel Kolling Dutra ◽  
Tiago Pinto

2006 ◽  
Vol 45 (No. 6) ◽  
pp. L165-L168 ◽  
Author(s):  
Toshihiro Somekawa ◽  
Chihiro Yamanaka ◽  
Masayuki Fujita ◽  
Maria Cecillia Galvez

2021 ◽  
Vol 14 (1) ◽  
pp. 058
Author(s):  
Camila Gardenea de Almeida Bandim ◽  
Josiclêda Domiciano Galvíncio

O objetivo deste estudo consiste em avaliar as áreas inundáveis em Recife, com especial atenção à avenida Caxangá.  Iniciando uma análise sobre a drenagem convencional utilizando a tecnologia LIDAR (Light Detection And Ranging). Os dados empregados neste trabalho foram captados pelo sistema LIDAR e possuem 50 cm de resolução, sendo um total de 12 quadrículas xyz para a constituição do mosaico Modelo Digital de Elevação (MDE) da avenida Caxangá, com destaque para as quadrículas 81_50-05 e 81_60-05, partindo dessas foram geradas as direções e acúmulos de fluxo. Os resultados obtidos enfatizam a alta resolução através da nítida visualização de elementos naturais e artificiais, e ainda o nivelamento do terreno. Em seguida, observa-se o acúmulo de fluxo que exibe as diferentes direções e acúmulos do escoamento superficial, ainda se percebe a influência na drenagem urbana das construções antrópicas e da vegetação em locais pontuais da avenida Caxangá. Em conclusão os dados do sistema LIDAR responderam positivamente, tanto na captação na modelagem do terreno e topografia artificial, como também para as gerações de direções e acúmulo de fluxos apresentando maiores valores para áreas depressivas naturais e antropizadas. Sendo destaque neste estudo as áreas antropizadas por provocarem problemas de desastres naturais. Conclui-se que as áreas antropizadas exercem um importante papel na drenagem urbana.  Mapping water storage areas in depression, using LIDAR data: Caxangá Avenida case study A B S T R A C TThe objective of this study is to evaluate the floodable areas in Recife, with special attention to Avenida Caxangá. Starting an analysis on conventional drainage using LIDAR (Light Detection And Ranging) technology. The data used in this work were captured by the LIDAR system and have 50 cm of resolution, with a total of 12 xyz squares for the constitution of the Digital Elevation Model (MDE) mosaic on Avenida Caxangá, with emphasis on the squares 81_50-05 and 81_60 -05, from these directions and flow accumulations were generated. The results obtained emphasize the high resolution through the clear visualization of natural and artificial elements, as well as the leveling of the terrain. Then, there is the accumulation of flow that shows the different directions and accumulations of runoff, the influence on the urban drainage of anthropic buildings and vegetation in specific places on Avenida Caxangá is still perceived. In conclusion, the data from the LIDAR system responded positively, both in capturing terrain modeling and artificial topography, as well as for generations of directions and accumulation of flows, presenting higher values for natural and anthropized depressive areas. Being highlighted in this study the areas anthropized because they cause problems of natural disasters. It is concluded that anthropized areas play an important role in urban drainage.Keywords: Geoprocessing. Remote sensing. Urbanization. Urban flood. drainage


2013 ◽  
Vol 13 (4) ◽  
pp. 309-316

Basic concepts of laser-based technique LIDAR (LIght Detection and Ranging) are discussed in this article as well as advantages and disadvantages. Presented are measurements of relative particulate concentrations above an unpaved road which were performed in a rural area near the Iowa City, Iowa, USA. The LIDAR system used in these measurements is a small, scanning LIDAR that uses elastic backscattering to obtain information on the amount of atmospheric aerosols. In the elastic LIDAR, light scattered back towards the LIDAR system from molecules and particles in the atmosphere is collected by a telescope and is detected with a photodiode. A Big Sky Laser model CFR-200 Nd:YAG laser operating at 1.064 microns is used to generate the LIDAR's outgoing signal. The laser is attached directly to the top of a 26 cm, f/10 Cassegrian telescope. A series of pulses are summed to make a single scan. A series of scans is used to build up a twodimensional map of relative atmospheric aerosol concentrations. With a maximum range of about 6-8 km, a range resolution of 2.5 m, and a time resolution of 30 s, the LIDAR is capable of very detailed mapping of aerosols.


MRS Advances ◽  
2020 ◽  
Vol 5 (11) ◽  
pp. 515-522
Author(s):  
J. H. Kim ◽  
V. Patil ◽  
J. M. Chun ◽  
H. S. Park ◽  
S. W. Seo ◽  
...  

ABSTRACTLight Detection and Ranging (LiDAR) is a primary sensor for autonomous vehicles to recognize surroundings. It detects near-infrared (NIR) light pulses, typically at 905nm, which is emitted and reflected by surrounding objects. Here, the fact of the matter is that conventional black or dark-tone cars with extremely low NIR reflection are hard to be detected by LiDAR and endanger the future highway. In this work, we propose to use platelet-shaped effect pigments with visible absorption and NIR reflectivity. Copper(Ⅱ) oxide and Silicon dioxide multilayer are theoretically investigated with different numbers of layers and thicknesses. The optimized structures appear various dark-tone colors with high NIR-reflectivity over 90%.


1987 ◽  
Author(s):  
S. Draghi ◽  
E. Galletti ◽  
M. Garbi ◽  
R. Petroni ◽  
E. Zanzottera

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2943 ◽  
Author(s):  
Gunzung Kim ◽  
Yongwan Park

The goal of light detection and ranging (LIDAR) systems is to achieve high-resolution three-dimensional distance images with high refresh rates and long distances. In scanning LIDAR systems, an idle listening time between pulse transmission and reception is a significant obstacle to accomplishing this goal. We apply intensity-modulated direct detection (IM/DD) optical code division multiple access (OCDMA) using nonreturn-to-zero on-off keying to eliminate the idle listening time in scanning LIDAR systems. The transmitter records time information while emitting a coded laser pulse in the measurement angle derived from the pixel information as the measurement direction. The receiver extracts and decodes the reflected laser pulses and estimates the distance to the target using time-of-flight until the pulse is received after being transmitted. Also, we rely on a series of pulses and eliminate alien pulses via several detection decision steps to enhance the robustness of the decision result. We built a prototype system and evaluated its performance by measuring black matte and white paper walls and assessing object detection by measuring a watering can in front of the black matte paper wall. This LIDAR system eliminated both shot and background noises in the reception process and measured greater distances with improvements in accuracy and precision.


Sign in / Sign up

Export Citation Format

Share Document