scholarly journals Analysis of the Future Land Use Land Cover Changes in the Gaborone Dam Catchment Using CA-Markov Model: Implications on Water Resources

2021 ◽  
Vol 13 (13) ◽  
pp. 2427
Author(s):  
Botlhe Matlhodi ◽  
Piet K. Kenabatho ◽  
Bhagabat P. Parida ◽  
Joyce G. Maphanyane

Land use/land cover (LULC) changes have been observed in the Gaborone dam catchment since the 1980s. A comprehensive analysis of future LULC changes is therefore necessary for the purposes of future land use and water resource planning and management. Recent advances in geospatial modelling techniques and the availability of remotely sensed data have become central to the monitoring and assessment of both past and future environmental changes. This study employed the cellular automata and Markov chain (CA-Markov) model combinations to simulate future LULC changes in the Gaborone dam catchment. Classified Landsat images from 1984, 1995, 2005 and 2015 were used to simulate the likely LULCs in 2015 and 2035. Model validation compared the simulated and observed LULCs of 2015 and showed a high level of agreement with Kappa variation estimates of Kno (0.82), Kloc (0.82) and Kstandard (0.76). Simulation results indicated a projected increase of 26.09%, 65.65% and 55.78% in cropland, built-up and bare land categories between 2015 and 2035, respectively. Reductions of 16.03%, 28.76% and 21.89% in areal coverage are expected for shrubland, tree savanna and water body categories, respectively. An increase in built-up and cropland areas is anticipated in order to meet the population’s demand for residential, industry and food production, which should be taken into consideration in future plans for the sustainability of the catchment. In addition, this may lead to water quality and quantity (both surface and groundwater) deterioration in the catchment. Moreover, water body reductions may contribute to water shortages and exacerbate droughts in an already water-stressed catchment. The loss of vegetal cover and an increase in built-up areas may result in increased runoff incidents, leading to flash floods. The output of the study provides useful information for land use planners and water resource managers to make better decisions in improving future land use policies and formulating catchment management strategies within the framework of sustainable land use planning and water resource management.

2020 ◽  
Vol 12 (9) ◽  
pp. 3747 ◽  
Author(s):  
Gebdang B. Ruben ◽  
Ke Zhang ◽  
Zengchuan Dong ◽  
Jun Xia

Understanding the rate and process of land-use/land-cover (LULC) change in a watershed is essential for managing natural resources and achieving sustainable development. Therefore, this study aims to analyze historical LULC change from 1980 to 2010 and project future changes in 2030, 2060, and 2090 in the Guanting Reservoir Basin (GRB), China, a critical water-supplying watershed for China’s capital Beijing, through scenario-based simulations. Two LULC scenarios, ‘business-as-usual’ and ‘governance’ (Gov), were projected using the Cellular Automata-Markov (CA–Markov) model. Historical LULC trend analysis shows that built-up land increased from 2.6% in 1980 to 5.26% in 2010, while cropland, grassland, and water body decreased. LULC conversion analysis indicates that, in general, grassland, cropland, and woodland were converted to built-up area from 1980 to 2010. The BAU scenario projects a dramatic increase in built-up area, rising from 2296.98 km2 (5.26%) in 2010 to 11,757.35 km2 (26.93%) in 2090 at the expense of cropland and grassland areas. Conversely, the Gov scenario predicts an increase in water body, woodland, and grassland, encouraging sustainable development. Overall, these results provide useful inputs to the LULC planners and water resources managers to elaborate on eco-friendly policies and regulations for GRB.


2021 ◽  
Vol 13 (10) ◽  
pp. 5652
Author(s):  
Chul-Min Song

The analysis of the local regulation effects is required for sustainable and effective land utilization because land use/land cover (LULC) changes are not only determined by human activity but are also affected by national policy and regulation; however, previous studies for land use/land cover (LULC) have mainly been conducted on the LULC changes using past experience. This study, therefore, analyzed the effects of local regulations aimed at preserving the water quality in South Korea. To this end, changes in LULC were simulated using the CA-Markov model under conditions in which two local regulations, the special countermeasure area (SCA) and total maximum daily load (TMDL), were not applied and examined the differences between the simulated LULC and the actual LULC as of 2018. In addition, the differences in the generation of pollutant loads were driven for Biochemical Oxygen Demand (BOD), Total Nitrogen (TN), and Total Phosphorus (TP) using pollutant unit-load. As a result, without SCA, the agricultural area increased by 379.0 km2, the urban area decreased by 101.8 km2, and the meadow area decreased by 176.0 km2. In addition, without TMDL, the urban area increased by 169.2 km2 and the meadow area decreased to 158.8 km2.Differences in BOD, TN, and TP pollution loads without SCA applications were shown to decrease to 22,710.5 kg·km−2 day−1, 1133.9 kg·km−2 day−1, and 429.8 kg·km−2 day−1, respectively, while BOD, TN, and TP pollution loads without TMDL applications decreased to 14,435.7 kg·km−2 day−1, 2543.6 kg·km−2 day−1, and 368.2 kg·km−2 day−1, respectively. As such, this study presents a methodology for analyzing the effects of local regulations using the CA-Markov model, which can intuitively and efficiently examine the effects of regulations by predicting LULC changes.


2021 ◽  
Vol 10 (7) ◽  
pp. 466
Author(s):  
Wenbo Mo ◽  
Yunlin Zhao ◽  
Nan Yang ◽  
Zhenggang Xu ◽  
Weiping Zhao ◽  
...  

Spatial and quantitative assessments of water yield services in watershed ecosystems are necessary for water resource management and improved water ecological protection. In this study, we used the InVEST model to estimate regional water yield in the Dongjiang Lake Basin in China. Moreover, we designed six scenarios to explore the impacts of climate and land use/land cover (LULC) changes on regional water yield and quantitatively determined the dominant mechanisms of water yield services. The results are expected to provide an important theoretical reference for future spatial planning and improvements of ecological service functions at the water source site. We found that (1) under the time series analysis, the water yield changes of the Dongjiang Lake Basin showed an initial decrease followed by an increase. Spatially, water yield also decreased from the lake area to the surrounding region. (2) Climate change exerted a more significant impact on water yield changes, contributing more than 98.26% to the water yield variability in the basin. In contrast, LULC had a much smaller influence, contributing only 1.74 %. (3) The spatial distribution pattern of water yield services in the watershed was more vulnerable to LULC changes. In particular, the expansion of built-up land is expected to increase the depth of regional water yield and alter its distribution, but it also increases the risk of waterlogging. Therefore, future development in the basin must consider the protection of ecological spaces and maintain the stability of the regional water yield function.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110261
Author(s):  
Hamza Islam ◽  
Habibuulah Abbasi ◽  
Ahmed Karam ◽  
Ali Hassan Chughtai ◽  
Mansoor Ahmed Jiskani

In this study, the Land Use/Land Cover (LULC) change has been observed in wetlands comprises of Manchar Lake, Keenjhar Lake, and Chotiari Reservoir in Pakistan over the last four decades from 1972 to 2020. Each wetland has been categorized into four LULC classes; water, natural vegetation, agriculture land, and dry land. Multitemporal Landsat satellite data including; Multi-Spectral Scanner (MSS), Thematic Mapper (TM), and Operational Land Imager (OLI) images were used for LULC changes evaluation. The Supervised Maximum-likelihood classifier method is used to acquire satellite imagery for detecting the LULC changes during the whole study period. Soil adjusted vegetation index technique (SAVI) was also used to reduce the effects of soil brightness values for estimating the actual vegetation cover of each study site. Results have shown the significant impact of human activities on freshwater resources by changing the natural ecosystem of wetlands. Change detection analysis showed that the impacts on the land cover affect the landscape of the study area by about 40% from 1972 to 2020. The vegetation cover of Manchar Lake and Keenjhar Lake has been decreased by 6,337.17 and 558.18 ha, respectively. SAVI analysis showed that soil profile is continuously degrading which vigorously affects vegetation cover within the study area. The overall classification accuracy and Kappa statistics showed an accuracy of >90% for all LULC mapping studies. This work demonstrates the LULC changes as a critical monitoring basis for ongoing analyses of changes in land management to enable decision-makers to establish strategies for effectively using land resources.


2020 ◽  
Author(s):  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA


2018 ◽  
Vol 11 (14) ◽  
Author(s):  
Jabir Haruna Abdulkareem ◽  
Wan Nor Azmin Sulaiman ◽  
Biswajeet Pradhan ◽  
Nor Rohaizah Jamil

2020 ◽  
Vol 12 (6) ◽  
pp. 2377 ◽  
Author(s):  
John Mawenda ◽  
Teiji Watanabe ◽  
Ram Avtar

Rapid and unplanned urban growth has adverse environmental and social consequences. This is prominent in sub-Saharan Africa where the urbanisation rate is high and characterised by the proliferation of informal settlements. It is, therefore, crucial that urban land use/land cover (LULC) changes be investigated in order to enhance effective planning and sustainable growth. In this paper, the spatial and temporal LULC changes in Blantyre city were studied using the integration of remotely sensed Landsat imageries of 1994, 2007 and 2018, and a geographic information system (GIS). The supervised classification method using the support vector machine algorithm was applied to generate the LULC maps. The study also analysed the transition matrices derived from the classified map to identify prominent processes of changes for planning prioritisation. The results showed that the built-up class, which included urban structures such as residential, industrial, commercial and public installations, increased in the 24-year study period. On the contrary, bare land, which included vacant lands, open spaces with little or no vegetation, hilly clear-cut areas and other fallow land, declined over the study period. This was also the case with the vegetation class (i.e., forests, parks, permanent tree-covered areas and shrubs). The post-classification results revealed that the LULC changes during the second period (2007–2018) were faster compared to the first period (1994–2007). Furthermore, the results revealed that the increase in built-up areas systematically targeted the bare land and avoided the vegetated areas, and that the vegetated areas were systematically cleared to bare land during the study period (1994–2018). The findings of this study have revealed the pressure of human activities on the land and natural environment in Blantyre and provided the basis for sustainable urban planning and development in Blantyre city.


2014 ◽  
Vol 18 (9) ◽  
pp. 3711-3732 ◽  
Author(s):  
A. T. Woldemichael ◽  
F. Hossain ◽  
R. Pielke Sr.

Abstract. This study adopted a differential land-use/land-cover (LULC) analysis to evaluate dam-triggered land–atmosphere interactions for a number of LULC scenarios. Two specific questions were addressed: (1) can dam-triggered LULC heterogeneities modify surface and energy budget, which, in turn, change regional convergence and precipitation patterns? (2) How extensive is the modification in surface moisture and energy budget altered by dam-triggered LULC changes occurring in different climate and terrain features? The Regional Atmospheric Modeling System (RAMS, version 6.0) was set up for two climatologically and topographically contrasting regions: the American River watershed (ARW), located in California, and the Owyhee River watershed (ORW), located in eastern Oregon. For the selected atmospheric river precipitation event of 29 December 1996 to 3 January 1997, simulations of three pre-defined LULC scenarios are performed. The definition of the scenarios are (1) the "control" scenario, representing the contemporary land use, (2) the "pre-dam" scenario, representing the natural landscape before the construction of the dams and (3) the "non-irrigation" scenario, representing the condition where previously irrigated landscape in the control is transformed to the nearby land-use type. Results indicated that the ARW energy and moisture fluxes were more extensively affected by dam-induced changes in LULC than the ORW. Both regions, however, displayed commonalities in the modification of land–atmosphere processes due to LULC changes, with the control–non-irrigation scenario creating more change than the control–pre-dam scenarios. These commonalities were: (1) the combination of a decrease in temperature (up to 0.15 °C) and an increase at dew point (up to 0.25 °C) was observed; (2) there was a larger fraction of energy partitioned to latent heat flux (up to 10 W m−2) that increased the amount of water vapor in the atmosphere and resulted in a larger convective available potential energy (CAPE); (3) low-level wind-flow variation was found to be responsible for pressure gradients that affected localized circulations, moisture advection and convergence. At some locations, an increase in wind speed up to 1.6 m s−1 maximum was observed; (4) there were also areas of well-developed vertical motions responsible for moisture transport from the surface to higher altitudes that enhanced precipitation patterns in the study regions.


Sign in / Sign up

Export Citation Format

Share Document