scholarly journals Microwave Satellite Measurements for Coastal Area and Extreme Weather Monitoring

2021 ◽  
Vol 13 (16) ◽  
pp. 3126
Author(s):  
Ferdinando Nunziata ◽  
Xiaofeng Li ◽  
Armando Marino ◽  
Weizeng Shao ◽  
Marcos Portabella ◽  
...  

In this project report, the main outcomes relevant to the Sino-European Dragon-4 cooperation project ID 32235 “Microwave satellite measurements for coastal area and extreme weather monitoring” are reported. The project aimed at strengthening the Sino-European research cooperation in the exploitation of European Space Agency, Chinese and third-party mission Earth Observation (EO) microwave satellite data. The latter were exploited to perform an effective monitoring of coastal areas, even under extreme weather conditions. An integrated multifrequency/polarization approach based on complementary microwave sensors (e.g., Synthetic Aperture Radar, scatterometer, radiometer), together with ancillary information coming from independent sources, i.e., optical imagery, numerical simulations and ground measurements, was designed. In this framework, several tasks were addressed including marine target detection, sea pollution, sea surface wind estimation and coastline extraction/classification. The main outcomes are both theoretical (i.e., new models and algorithms were developed) and applicative (i.e., user-friendly maps were provided to the end-user community of coastal area management according to smart processing of remotely sensed data). The scientific relevance consists in the development of new algorithms, the effectiveness and robustness of which were verified on actual microwave measurements, and the improvement of existing methodologies to deal with challenging test cases.

2019 ◽  
Vol 11 (2) ◽  
pp. 153 ◽  
Author(s):  
Yuan Gao ◽  
Changlong Guan ◽  
Jian Sun ◽  
Lian Xie

In contrast to co-polarization (VV or HH) synthetic aperture radar (SAR) images, cross-polarization (CP for VH or HV) SAR images can be used to retrieve sea surface wind speeds larger than 20 m/s without knowing the wind directions. In this paper, a new wind speed retrieval model is proposed for European Space Agency (ESA) Sentinel-1A (S-1A) Extra-Wide swath (EW) mode VH-polarized images. Nineteen S-1A images under tropical cyclone condition observed in the 2016 hurricane season and the matching data from the Soil Moisture Active Passive (SMAP) radiometer are collected and divided into two datasets. The relationships between normalized radar cross-section (NRCS), sea surface wind speed, wind direction and radar incidence angle are analyzed for each sub-band, and an empirical retrieval model is presented. To correct the large biases at the center and at the boundaries of each sub-band, a corrected model with an incidence angle factor is proposed. The new model is validated by comparing the wind speeds retrieved from S-1A images with the wind speeds measured by SMAP. The results suggest that the proposed model can be used to retrieve wind speeds up to 35 m/s for sub-bands 1 to 4 and 25 m/s for sub-band 5.


2009 ◽  
Vol 2 (5) ◽  
pp. 2639-2688 ◽  
Author(s):  
B. M. Dinelli ◽  
E. Arnone ◽  
G. Brizzi ◽  
M. Carlotti ◽  
E. Castelli ◽  
...  

Abstract. We present a multi-year database of atmospheric state parameters retrieved for the upper tropospheric to mesospheric region from satellite measurements with a 2-dimensional tomographic approach. The full mission of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board the European Space Agency ENVISAT satellite, is analyzed with the Geofit Multi-Target Retrieval (GMTR) system to obtain the MIPAS2D database with atmospheric fields of pressure, temperature and volume mixing ratio of MIPAS main targets H2O, O3, HNO3, CH4, N2O, and NO2. The database covers both the MIPAS nominal observation mode measured at Full Resolution (FR) from July 2002 to March 2004 and the nominal observation mode of the new configuration, measured at Optimized Resolution (OR) and introduced in 2005. Further to the main targets, minor species N2O5, ClONO2, COF2, CFC-11, and CFC-12 for the FR mission only have been included in MIPAS2D to enhance its applicability in studies of stratospheric chemistry. The database is continuously updated with the analysis of the ongoing measurements that are planned to last until the end of 2013. The GMTR algorithm is operated on a fixed vertical grid coincident with the tangent altitudes of the FR nominal mode, spanning the altitude range from 6 to 68 km. In the horizontal domain, FR measurements are retrieved on both the observational grid and an equispaced 5 latitudinal-degrees grid which is made possible by the 2-dimensional retrieval algorithm. The analysis of MIPAS OR observations is operated on the same altitude-latitude fixed retrieval grid used for the FR measurements. This choice provides a homogeneous database in altitude and latitude, over the whole globe, covering to date about seven years of measurements. The equispaced latitudinal grid provides a new and convenient layout for the much needed synergetic studies of data from various instrumental and modeling sources. MIPAS2D is available to the scientific community through the two web sites http://www.mbf.fci.unibo.it/mipas2d.html, and http://www.isac.cnr.it/~rss/mipas2d.htm.


2021 ◽  
Vol 13 (24) ◽  
pp. 4984
Author(s):  
Albert Comellas Prat ◽  
Stefano Federico ◽  
Rosa Claudia Torcasio ◽  
Leo Pio D’Adderio ◽  
Stefano Dietrich ◽  
...  

Tropical-like cyclone (TLC or medicane) Ianos formed during mid-September 2020 over the Southern Mediterranean Sea, and, during its mature stage on days 17–18, it affected southern Italy and especially Greece and its Ionian islands, where it brought widespread disruption due to torrential rainfall, severe wind gusts, and landslides, causing casualties. This study performs a sensitivity analysis of the mature phase of TLC Ianos with the WRF model to different microphysics parameterization schemes and initial and boundary condition (IBC) datasets. Satellite measurements from the Global Precipitation Measurement Mission-Core Observatory (GPM-CO) dual-frequency precipitation radar (DPR) and the Advanced Scatterometer (ASCAT) sea-surface wind field were used to verify the WRF model forecast quality. Results show that the model is most sensitive to the nature of the IBC dataset (spatial resolution and other dynamical and physical differences), which better defines the primary mesoscale features of Ianos (low-level vortex, eyewall, and main rainband structure) when using those at higher resolution (~25 km versus ~50 km) independently of the microphysics scheme, but with the downside of producing too much convection and excessively low minimum surface pressures. On the other hand, no significant differences emerged among their respective trajectories. All experiments overestimated the vertical extension of the main rainbands and display a tendency to shift the system to the west/northwest of the actual position. Especially among the experiments with the higher-resolution IBCs, the more complex WRF microphysics schemes (Thompson and Morrison) tended to outperform the others in terms of rain rate forecast and most of the other variables examined. Furthermore, WSM6 showed a good performance while WDM6 was generally the least accurate. Lastly, the calculation of the cyclone phase space diagram confirmed that all simulations triggered a warm-core storm, and all but one also exhibited axisymmetry at some point of the studied lifecycle.


2005 ◽  
Vol 14 (7) ◽  
pp. 657-667 ◽  
Author(s):  
Joo-Hyun Bae ◽  
Yoo-Keun Kim ◽  
In-Bo Oh ◽  
Ju-Hee Jeong ◽  
Ji-Hye Kweon ◽  
...  

2020 ◽  
Author(s):  
Martin Pačes ◽  
Daniel Santillan Pedrosa ◽  
Ashley Smith

<p>VirES for Swarm [1] is a data manipulation and retrieval interface for the ESA Swarm constellation mission data products. It includes tools for studying various geomagnetic models by comparing them to the Swarm satellite measurements at given space weather and ionospheric conditions.</p><p>The list of the provided Swarm products is growing and it currently includes MAG (both, LR and HR), EFI, IBI, TEC, FAC, EEF, and IPD products as well as the collection of L2 SHA Swarm magnetic models, all synchronized to their latest available versions.</p><p>VirES provides access to the Swarm measurements and models either through an interactive visual web user interface or through a Python-based API (machine-to-machine interface). The latter allows integration of the users' custom processing and visualization.</p><p>The API allows easy extraction of data subsets of various Swarm products (temporal, spatial or filtered by ranges of other data parameters, such as, e.g., space weather conditions) without needing to handle the original product files. This includes evaluation of composed magnetic models (MCO, MLI, MMA, and MIO) and calculation of residuals along the satellite orbit.</p><p>The Python API can be exploited in the recently opened Virtual Research Environment (VRE), a JupyterLab based web interface allowing writing of processing and visualization scripts without need for software installation. The VRE comes also with pre-installed third party software libraries (processors and models) as well as the generic Python data handling and visualization tools.</p><p>A rich library of tutorial notebooks has been prepared to ease the first steps and make it a convenient tool for a broad audience ranging from students and enthusiasts to advanced scientists.</p><p>Our presentation focuses on the introduction of the new Virtual Research Environment and recent VirES evolution.</p><p>[1] https://vires.services</p>


2020 ◽  
Author(s):  
Andrew Yau ◽  
Andrew Howarth ◽  
H. Gordon James ◽  
David Knudsen ◽  
Richard Langley ◽  
...  

<p>The CASSIOPE Enhanced Polar Outflow Probe (e-POP) was originally envisioned as a low-cost, short-lifetime (18-month) small-satellite mission for investigating polar ion outflows and related magnetosphere-ionosphere coupling phenomena. However, e-POP is currently in its seventh year of continuing operation, as an addition to and as the fourth component of the Swarm constellation of satellites, under the European Space Agency Third Party Mission Programme.</p><p>Since 2017, the increased operation duty-cycle of e-POP has enabled the routine extension of its science operations to its full altitude range and to all latitudes, and made possible several new studies of important mid- and low-latitude topside ionospheric phenomena. In addition, the integrated e-POP and Swarm operation takes advantage of the synergy between the orbit characteristics and unique instrument capabilities between e-POP and Swarm, to enable or enhance a host of coordinated studies of magnetosphere-ionosphere coupling: including the Earth’s magnetic field and related current systems, auroral and upper atmospheric dynamics, and ionosphere-thermosphere and ionosphere-plasmasphere coupling processes. We present an overview of these new studies, focusing on their results on the effects of space weather in the ionosphere and upper atmosphere such as anomalous satellite orbit drag and ionospheric scintillation.</p>


2020 ◽  
Vol 12 (19) ◽  
pp. 3132
Author(s):  
Rajagopalan Rengarajan ◽  
James C. Storey ◽  
Michael J. Choate

There is an ever-increasing need to use an accurate and consistent geometric ground reference in the processing of remotely sensed data products, as this reduces the burden on the end-users to account for the differences between the data products from different missions. In this regard, the U.S. Geological Survey (USGS) initiated an effort to harmonize the Landsat ground reference with the Sentinel-2 Global Reference Image (GRI) to improve the co-registration between the data products of the two global medium-resolution missions. In this paper, we discuss the process, results, and the improvements expected from this harmonization of two ground references using space-triangulation-based bundle adjustment techniques. The ground coordinates of the Landsat reference library, consisting of five million Ground Control Points (GCPs) were adjusted in a series of four simultaneous bundle block adjustments using thousands of Landsat-8 (L8) scenes anchored with more than 300,000 control points extracted from the GRI dataset. The net adjustments to each of the four blocks, namely, Australia, Americas, Eurasia, and Islands, varied anywhere from 1 to 13 m, depending on the accuracy of the GCPs in these blocks. The use of the GRI dataset in our bundle adjustment not only improved the absolute accuracy of the Landsat ground reference, but will also improve the co-registration between Sentinel-2 and Landsat terrain corrected products, as the European Space Agency plans to process the Sentinel-2 products using the GRI dataset. Independent validation of the Landsat products processed using harmonized GCPs with the GRI dataset indicated a global misregistration error of less than 8 m Circular Error Probable at 90 % (CE90), an improvement from the 25 m prior to harmonization. The improvements to the Landsat products using the harmonized GCPs are expected to be available to the public as part of Landsat Collection-2 processing by the end of 2020.


Sign in / Sign up

Export Citation Format

Share Document