Integrated Science Operations of CASSIOPE e-POP with the Swarm Constellation for New Studies of Magnetosphere-Ionosphere Coupling

Author(s):  
Andrew Yau ◽  
Andrew Howarth ◽  
H. Gordon James ◽  
David Knudsen ◽  
Richard Langley ◽  
...  

<p>The CASSIOPE Enhanced Polar Outflow Probe (e-POP) was originally envisioned as a low-cost, short-lifetime (18-month) small-satellite mission for investigating polar ion outflows and related magnetosphere-ionosphere coupling phenomena. However, e-POP is currently in its seventh year of continuing operation, as an addition to and as the fourth component of the Swarm constellation of satellites, under the European Space Agency Third Party Mission Programme.</p><p>Since 2017, the increased operation duty-cycle of e-POP has enabled the routine extension of its science operations to its full altitude range and to all latitudes, and made possible several new studies of important mid- and low-latitude topside ionospheric phenomena. In addition, the integrated e-POP and Swarm operation takes advantage of the synergy between the orbit characteristics and unique instrument capabilities between e-POP and Swarm, to enable or enhance a host of coordinated studies of magnetosphere-ionosphere coupling: including the Earth’s magnetic field and related current systems, auroral and upper atmospheric dynamics, and ionosphere-thermosphere and ionosphere-plasmasphere coupling processes. We present an overview of these new studies, focusing on their results on the effects of space weather in the ionosphere and upper atmosphere such as anomalous satellite orbit drag and ionospheric scintillation.</p>

2020 ◽  
Vol 12 (11) ◽  
pp. 1804 ◽  
Author(s):  
Nicolas Lamquin ◽  
Sébastien Clerc ◽  
Ludovic Bourg ◽  
Craig Donlon

Copernicus is a European system for monitoring the Earth in support of European policy. It includes the Sentinel-3 satellite mission which provides reliable and up-to-date measurements of the ocean, atmosphere, cryosphere, and land. To fulfil mission requirements, two Sentinel-3 satellites are required on-orbit at the same time to meet revisit and coverage requirements in support of Copernicus Services. The inter-unit consistency is critical for the mission as more S3 platforms are planned in the future. A few weeks after its launch in April 2018, the Sentinel-3B satellite was manoeuvred into a tandem configuration with its operational twin Sentinel-3A already in orbit. Both satellites were flown only thirty seconds apart on the same orbit ground track to optimise cross-comparisons. This tandem phase lasted from early June to mid October 2018 and was followed by a short drift phase during which the Sentinel-3B satellite was progressively moved to a specific orbit phasing of 140° separation from the sentinel-3A satellite. In this paper, an output of the European Space Agency (ESA) Sentinel-3 Tandem for Climate study (S3TC), we provide a full methodology for the homogenisation and harmonisation of the two Ocean and Land Colour Instruments (OLCI) based on the tandem phase. Homogenisation adjusts for unavoidable slight spatial and spectral differences between the two sensors and provide a basis for the comparison of the radiometry. Persistent radiometric biases of 1–2% across the OLCI spectrum are found with very high confidence. Harmonisation then consists of adjusting one instrument on the other based on these findings. Validation of the approach shows that such harmonisation then procures an excellent radiometric alignment. Performed on L1 calibrated radiances, the benefits of harmonisation are fully appreciated on Level 2 products as reported in a companion paper. Whereas our methodology aligns one sensor to behave radiometrically as the other, discussions consider the choice of the reference to be used within the operational framework. Further exploitation of the measurements indeed provides evidence of the need to perform flat-fielding on both payloads, prior to any harmonisation. Such flat-fielding notably removes inter-camera differences in the harmonisation coefficients. We conclude on the extreme usefulness of performing a tandem phase for the OLCI mission continuity as well as for any optical mission to which the methodology presented in this paper applies (e.g., Sentinel-2). To maintain the climate record, it is highly recommended that the future Sentinel-3C and Sentinel-3D satellites perform tandem flights when injected into the Sentinel-3 time series.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jesús Fernández-Conde ◽  
Jaime Gómez-Saez-de-Tejada ◽  
David Pérez-Lizán ◽  
Rafael Toledo-Moreo

A satellite spacecraft is generally composed of a central Control and Data Management Unit (CDMU) and several instruments, each one locally controlled by its Instrument Control Unit (ICU). Inside each ICU, the embedded boot software (BSW) is the very first piece of software executed after power-up or reset. The ICU BSW is a nonpatchable, stand-alone, real-time software package that initializes the ICU HW, performs self-tests, and waits for CDMU commands to maintain on-board memory and ultimately start a patchable application software (ASW), which is responsible for execution of the nominal tasks assigned to the ICU (control of the satellite instrument being the most important one). The BSW is a relatively small but critical software item, since an unexpected behaviour can cause or contribute to a system failure resulting in fatal consequences such as the satellite mission loss. The development of this kind of embedded software is special in many senses, primarily due to its criticality, real-time expected performance, and the constrained size of program and data memories. This paper presents the lessons learned in the development and HW/SW integration phases of a satellite ICU BSW designed for a European Space Agency mission.


2019 ◽  
Vol 9 (11) ◽  
pp. 2338 ◽  
Author(s):  
Jose Luis Saorín ◽  
Vicente Lopez-Chao ◽  
Jorge de la Torre-Cantero ◽  
Manuel Drago Díaz-Alemán

Aerospace heritage requires tools that allow its transfer and conservation beyond photographs and texts. The complexity of these engineering projects can be collected through digital graphic representation. Nevertheless, physical scale models provide additional information of high value when they involve full detailed information, for which the model in engineering was normally one more product of the manufacturing process, which entails a high cost. However, the standardization of digital fabrication allows the manufacture of high-detail models at low cost. For this reason, in this paper a case study of the graphic reengineering and planning stages for digital fabrication of a full-scale high-detail model (HDM) of the spatial instrument of the European Space Agency, named the Solar Orbiter mission Polarimetric and Helioseismic Imager (SO/PHI), is presented. After the analysis of this experience, seven stages of planning and graphic reengineering are proposed through collaborative work for the low cost digital manufacture of HDMs.


2021 ◽  
Author(s):  
Mikael Granvik ◽  
Tuomas Lehtinen ◽  
Andrea Bellome ◽  
Joan-Pau Sánchez

<div class="page" title="Page 1"> <div class="layoutArea"> <div class="column"> <p>Icarus is a mission concept designed to record the activity of an asteroid during a close encounter with the Sun. The primary science goal of the mission is to unravel the nontrivial mechanism(s) that destroy asteroids on orbits with small perihelion distances. Understanding the destruction mechanism(s) allows us to constrain the bulk composition and interior structure of asteroids in general. The Icarus mission does not only aim to achieve its science goals but also functions as a technical demonstration of what a low-cost space mission can do. The proposed space segment will include a single spacecraft capable of surviving and operating in the harsh environment near the Sun. The spacecraft design relies on the heritage of missions such as Rosetta, MESSENGER, Parker Solar Probe, BepiColombo, and Solar Orbiter. The spacecraft will rendezvous with an asteroid during its perihelion passage and records the changes taking place on the asteroid’s surface. The primary scientific payload has to be capable of imaging the asteroid’s surface in high resolution using visual and near-infrared channels as well as collecting and analyzing particles that are ejected from the asteroid. The payload bay also allows for additional payloads relating to, for example, solar research. The Icarus spacecraft and the planned payloads have high technology readiness levels and the mission is aimed to fit the programmatic and cost constraints of the F1 mission (Comet Interceptor) by the European Space Agency. Considering the challenging nature of the Icarus trajectory and the fact that the next F-class mission opportunity (F2) is yet to be announced, we conclude that Icarus is feasible as an F-class mission when certain constraints such as a suitable launch configuration are met (e.g., if EnVision is selected as M5). A larger mission class, such as the M class by the European Space Agency, would be feasible in all circumstances.</p> </div> </div> </div>


2009 ◽  
Vol 26 (12) ◽  
pp. 2516-2530 ◽  
Author(s):  
Ulrike Paffrath ◽  
Christian Lemmerz ◽  
Oliver Reitebuch ◽  
Benjamin Witschas ◽  
Ines Nikolaus ◽  
...  

Abstract In the frame of the Atmospheric Dynamics Mission Aeolus (ADM-Aeolus) satellite mission by the European Space Agency (ESA), a prototype of a direct-detection Doppler wind lidar was developed to measure wind from ground and aircraft at 355 nm. Wind is measured from aerosol backscatter signal with a Fizeau interferometer and from molecular backscatter signal with a Fabry–Perot interferometer. The aim of this study is to validate the satellite instrument before launch, improve the retrieval algorithms, and consolidate the expected performance. The detected backscatter signal intensities determine the instrument wind measurement performance among other factors, such as accuracy of the calibration and stability of the optical alignment. Results of measurements and simulations for a ground-based instrument are compared, analyzed, and discussed. The simulated atmospheric aerosol models were validated by use of an additional backscatter lidar. The measured Rayleigh backscatter signals of the wind lidar prototype up to an altitude of 17 km are compared to simulations and show a good agreement by a factor better than 2, including the analyses of different error sources. First analyses of the signal at the Mie receiver from high cirrus clouds are presented. In addition, the simulations of the Rayleigh signal intensities of the Atmospheric Laser Doppler Instrument (ALADIN) Airborne Demonstrator (A2D) instrument on ground and aircraft were compared to simulations of the satellite system. The satellite signal intensities above 11.5 km are larger than those from the A2D ground-based instrument and always smaller than those from the aircraft for all altitudes.


2013 ◽  
Vol 56 (2) ◽  
Author(s):  
Vincenzo Romano ◽  
Giovanni Macelloni ◽  
Luca Spogli ◽  
Marco Brogioni ◽  
Giuditta Marinaro ◽  
...  

<p>In the framework of the project BIS - Bipolar Ionospheric Scintillation and Total Electron Content Monitoring, the ISACCO-DMC0 and ISACCO-DMC1 permanent monitoring stations were installed in 2008. The principal scope of the stations is to measure the ionospheric total electron content (TEC) and to monitor the ionospheric scintillations, using high-sampling-frequency global positioning system (GPS) ionospheric scintillation and TEC monitor (GISTM) receivers. The disturbances that the ionosphere can induce on the electromagnetic signals emitted by the Global Navigation Satellite System constellations are due to the presence of electron density anomalies in the ionosphere, which are particularly frequent at high latitudes, where the upper atmosphere is highly sensitive to perturbations coming from outer space. With the development of present and future low-frequency space-borne microwave missions (e.g., Soil Moisture and Ocean Salinity [SMOS], Aquarius, and Soil Moisture Active Passive missions), there is an increasing need to estimate the effects of the ionosphere on the propagation of electromagnetic waves that affects satellite measurements. As an example, how the TEC data collected at Concordia station are useful for the calibration of the European Space Agency SMOS data within the framework of an experiment promoted by the European Space Agency (known as DOMEX) will be discussed. The present report shows the ability of the GISTM station to monitor ionospheric scintillation and TEC, which indicates that only the use of continuous GPS measurements can provide accurate information on TEC variability, which is necessary for continuous calibration of satellite data.</p>


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3447
Author(s):  
Łukasz Gluba ◽  
Mateusz Łukowski ◽  
Radosław Szlązak ◽  
Joanna Sagan ◽  
Kamil Szewczak ◽  
...  

Water resources on Earth become one of the main concerns for society. Therefore, remote sensing methods are still under development in order to improve the picture of the global water cycle. In this context, the microwave bands are the most suitable to study land–water resources. The Soil Moisture and Ocean Salinity (SMOS), satellite mission of the European Space Agency (ESA), is dedicated for studies of the water in soil over land and salinity of oceans. The part of calibration/validation activities in order to improve soil moisture retrieval algorithms over land is done with ground-based passive radiometers. The European Space Agency L-band Microwave Radiometer (ELBARA III) located near the Bubnów wetland in Poland is capable of mapping microwave emissivity at the local scale, due to the azimuthal and vertical movement of the horn antenna. In this paper, we present results of the spatio-temporal mapping of the brightness temperatures on the heterogeneous area of the Bubnów test-site consisting of an area with variable organic matter (OM) content and different type of vegetation. The soil moisture (SM) was retrieved with the L-band microwave emission of the biosphere (L-MEB) model with simplified roughness parametrization (SRP) coupling roughness and optical depth parameters. Estimated soil moisture values were compared with in-situ data from the automatic agrometeorological station. The results show that on the areas with a relatively low OM content (4–6%—cultivated field) there was good agreement between measured and estimated SM values. Further increase in OM content, starting from approximately 6% (meadow wetland), caused an increase in bias, root mean square error (RMSE), and unbiased RMSE (ubRMSE) values and a general drop in correlation coefficient (R). Despite a span of obtained R values, we found that time-averaged estimated SM using the L-MEB SRP approach strongly correlated with OM contents.


Author(s):  
I. Yalcin ◽  
S. Kocaman ◽  
S. Saunier ◽  
C. Albinet

Abstract. The requirement for very high-resolution satellite imagery by different applications has been increasing continuously. Several commercial and government-supported missions provide sub-meter spatial resolutions from optical sensors aboard Earth Observation (EO) satellites. The MAXAR satellite constellation acquires images with up to 30 cm Ground Sampling Distances (GSDs); and the High-Definition (HD) image production technology developed by MAXAR doubles the resolution by using artificial intelligence methods. Although the spatial resolution is one of the most important image quality metrics, several other factors indicated by diverse radiometric and geometric characteristics may circumscribe the usability of data in different projects. As part of mandatory activities of European Space Agency (ESA), Earthnet Programme provides a framework for integrating Third-Party Missions into the overall EO strategy and promotes the international use of the data. The Earthnet Data Assessment Pilot (EDAP) project aims at assessing the quality and the suitability of TPMs, and provides a communication platform between mission providers to ensure the coherence of the systems. In this study, the radiometric quality of the MAXAR HD products was evaluated within the EDAP project framework by using several General Image-Quality Equation (GIQE) metrics, visual inspections, and comparative assessments with orthophotos obtained from an Unmanned Aerial Vehicle (UAV) platform and with the original (non-HD) orthophotos with 30 cm resolutions. The results show that the spatial resolution improvements are observable in urban areas, where sharp edges are present. However, blurring and color noise patterns also occured in the HD images.


2021 ◽  
Vol 13 (8) ◽  
pp. 1518
Author(s):  
Emilio Rapuano ◽  
Gabriele Meoni ◽  
Tommaso Pacini ◽  
Gianmarco Dinelli ◽  
Gianluca Furano ◽  
...  

In recent years, research in the space community has shown a growing interest in Artificial Intelligence (AI), mostly driven by systems miniaturization and commercial competition. In particular, the application of Deep Learning (DL) techniques on board Earth Observation (EO) satellites might lead to numerous advantages in terms of mitigation of downlink bandwidth constraints, costs, and increment of the satellite autonomy. In this framework, the CloudScout project, funded by the European Space Agency (ESA), represents the first time in-orbit demonstration of a Convolutional Neural Network (CNN) applied to hyperspectral images for cloud detection. The first instance of this use case has been done with an INTEL Myriad 2 VPU on board a CubeSat optimized for low cost, size, and power efficiency. Nevertheless, this solution introduces multiple drawbacks due to its design not specifically being for the space environment, thus limiting its applicability to short-lifetime Low Earth Orbit (LEO) applications. The current work provides a benchmark between the Myriad 2 and our custom hardware accelerator designed for Field Programmable Gate Arrays (FPGAs). The metrics used for comparison include inference time, power consumption, space qualification, and components. The obtained results show that the FPGA-based solution is characterized by a reduced inference time, and a higher possibility of customization, but at the cost of greater power consumption and a longer Time to Market. As a conclusion, the proposed approach might extend the potential market of DL-based solutions to long-term LEO or interplanetary exploration missions through deployment on space-qualified FPGAs, with a limited cost in energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document