scholarly journals Influence of Spatial Resolution for Vegetation Indices’ Extraction Using Visible Bands from Unmanned Aerial Vehicles’ Orthomosaics Datasets

2021 ◽  
Vol 13 (16) ◽  
pp. 3238
Author(s):  
Mirko Saponaro ◽  
Athos Agapiou ◽  
Diofantos G. Hadjimitsis ◽  
Eufemia Tarantino

The consolidation of unmanned aerial vehicle (UAV) photogrammetric techniques for campaigns with high and medium observation scales has triggered the development of new application areas. Most of these vehicles are equipped with common visible-band sensors capable of mapping areas of interest at various spatial resolutions. It is often necessary to identify vegetated areas for masking purposes during the postprocessing phase, excluding them for the digital elevation models (DEMs) generation or change detection purposes. However, vegetation can be extracted using sensors capable of capturing the near-infrared part of the spectrum, which cannot be recorded by visible (RGB) cameras. In this study, after reviewing different visible-band vegetation indices in various environments using different UAV technology, the influence of the spatial resolution of orthomosaics generated by photogrammetric processes in the vegetation extraction was examined. The triangular greenness index (TGI) index provided a high level of separability between vegetation and nonvegetation areas for all case studies in any spatial resolution. The efficiency of the indices remained fundamentally linked to the context of the scenario under investigation, and the correlation between spatial resolution and index incisiveness was found to be more complex than might be trivially assumed.

Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 27 ◽  
Author(s):  
Athos Agapiou

Red–green–blue (RGB) cameras which are attached in commercial unmanned aerial vehicles (UAVs) can support remote-observation small-scale campaigns, by mapping, within a few centimeter’s accuracy, an area of interest. Vegetated areas need to be identified either for masking purposes (e.g., to exclude vegetated areas for the production of a digital elevation model (DEM) or for monitoring vegetation anomalies, especially for precision agriculture applications. However, while detection of vegetated areas is of great importance for several UAV remote sensing applications, this type of processing can be quite challenging. Usually, healthy vegetation can be extracted at the near-infrared part of the spectrum (approximately between 760–900 nm), which is not captured by the visible (RGB) cameras. In this study, we explore several visible (RGB) vegetation indices in different environments using various UAV sensors and cameras to validate their performance. For this purposes, openly licensed unmanned aerial vehicle (UAV) imagery has been downloaded “as is” and analyzed. The overall results are presented in the study. As it was found, the green leaf index (GLI) was able to provide the optimum results for all case studies.


Proceedings ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 18
Author(s):  
Remy Fieuzal ◽  
Vincent Bustillo ◽  
David Collado ◽  
Gerard Dedieu

The aim of this study is to assess the possibilities of the VNIR (Visible and Near InfraRed) and SWIR (Short Wavelength InfraRed) satellite data for estimating intra-plot patterns of soil electrical resistivity consistent with ground measurements. The methodology is based on optical reflectances that constitute the input variables of random forest, alone or in combination with parameters derived from a digital elevation model (DEM). Over a field located in southwestern France, the results show high level of accuracy for the 0–50 and 0–100 cm soil layers (with R² of 0.69 and 0.59, and a relative RMSE of 18% and 16%, respectively), the performances being lower for the 0–170 cm layer (R² of 0.39, relative RMSE of 20%). The combined use of optical reflectances with parameters derived from the DEM slightly improves the performances, whatever the considered layer. The influence of each reflectance on soil electrical resistivity estimates is finally analyzed, showing that the wavelengths acquired in the SWIR have a relative higher importance than VNIR reflectance.


2021 ◽  
Vol 87 (12) ◽  
pp. 891-899
Author(s):  
Freda Elikem Dorbu ◽  
Leila Hashemi-Beni ◽  
Ali Karimoddini ◽  
Abolghasem Shahbazi

The introduction of unmanned-aerial-vehicle remote sensing for collecting high-spatial- and temporal-resolution imagery to derive crop-growth indicators and analyze and present timely results could potentially improve the management of agricultural businesses and enable farmers to apply appropriate solution, leading to a better food-security framework. This study aimed to analyze crop-growth indicators such as the normalized difference vegetation index (NDVI), crop height, and vegetated surface roughness to determine the growth of corn crops from planting to harvest. Digital elevation models and orthophotos generated from the data captured using multispectral, red/green/blue, and near-infrared sensors mounted on an unmanned aerial vehicle were processed and analyzed to calculate the various crop-growth indicators. The results suggest that remote sensing-based growth indicators can effectively determine crop growth over time, and that there are similarities and correlations between the indicators.


2020 ◽  
Vol 12 (1) ◽  
pp. 136 ◽  
Author(s):  
Athos Agapiou

Subsurface targets can be detected from space-borne sensors via archaeological proxies, known in the literature as cropmarks. A topic that has been limited in its investigation in the past is the identification of the optimal spatial resolution of satellite sensors, which can better support image extraction of archaeological proxies, especially in areas with spectral heterogeneity. In this study, we investigated the optimal spatial resolution (OSR) for two different cases studies. OSR refers to the pixel size in which the local variance, of a given area of interest (e.g., archaeological proxy), is minimized, without losing key details necessary for adequate interpretation of the cropmarks. The first case study comprises of a simulated spectral dataset that aims to model a shallow buried archaeological target cultivated on top with barley crops, while the second case study considers an existing site in Cyprus, namely the archaeological site of “Nea Paphos”. The overall methodology adopted in the study is composed of five steps: firstly, we defined the area of interest (Step 1), then we selected the local mean-variance value as the optimization criterion of the OSR (Step 2), while in the next step (Step 3), we spatially aggregated (upscale) the initial spectral datasets for both case studies. In our investigation, the spectral range was limited to the visible and near-infrared part of the spectrum. Based on these findings, we determined the OSR (Step 4), and finally, we verified the results (Step 5). The OSR was estimated for each spectral band, namely the blue, green, red, and near-infrared bands, while the study was expanded to also include vegetation indices, such as the Simple Ratio (SR), the Atmospheric Resistance Vegetation Index (ARVI), and the Normalized Difference Vegetation Index (NDVI). The outcomes indicated that the OSR could minimize the local spectral variance, thus minimizing the spectral noise, and, consequently, better support image processing for the extraction of archaeological proxies in areas with high spectral heterogeneity.


2019 ◽  
Vol 11 (22) ◽  
pp. 2667 ◽  
Author(s):  
Jiang ◽  
Cai ◽  
Zheng ◽  
Cheng ◽  
Tian ◽  
...  

Commercially available digital cameras can be mounted on an unmanned aerial vehicle (UAV) for crop growth monitoring in open-air fields as a low-cost, highly effective observation system. However, few studies have investigated their potential for nitrogen (N) status monitoring, and the performance of camera-derived vegetation indices (VIs) under different conditions remains poorly understood. In this study, five commonly used VIs derived from normal color (RGB) images and two typical VIs derived from color near-infrared (CIR) images were used to estimate leaf N concentration (LNC). To explore the potential of digital cameras for monitoring LNC at all crop growth stages, two new VIs were proposed, namely, the true color vegetation index (TCVI) from RGB images and the false color vegetation index (FCVI) from CIR images. The relationships between LNC and the different VIs varied at different stages. The commonly used VIs performed well at some stages, but the newly proposed TCVI and FCVI had the best performance at all stages. The performances of the VIs with red (or near-infrared) and green bands as the numerator were limited by saturation at intermediate to high LNCs (LNC > 3.0%), but the TCVI and FCVI had the ability to mitigate the saturation. The results of model validations further supported the superiority of the TCVI and FCVI for LNC estimation. Compared to the other VIs derived using RGB cameras, the relative root mean square errors (RRMSEs) of the TCVI were improved by 8.6% on average. For the CIR images, the best-performing VI for LNC was the FCVI (R2 = 0.756, RRMSE = 14.18%). The LNC–TCVI and LNC–FCVI were stable under different cultivars, N application rates, and planting densities. The results confirmed the applicability of UAV-based RGB and CIR cameras for crop N status monitoring under different conditions, which should assist the precision management of N fertilizers in agronomic practices.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qian Sun ◽  
Lin Sun ◽  
Meiyan Shu ◽  
Xiaohe Gu ◽  
Guijun Yang ◽  
...  

Lodging is one of the main factors affecting the quality and yield of crops. Timely and accurate determination of crop lodging grade is of great significance for the quantitative and objective evaluation of yield losses. The purpose of this study was to analyze the monitoring ability of a multispectral image obtained by an unmanned aerial vehicle (UAV) for determination of the maize lodging grade. A multispectral Parrot Sequoia camera is specially designed for agricultural applications and provides new information that is useful in agricultural decision-making. Indeed, a near-infrared image which cannot be seen with the naked eye can be used to make a highly precise diagnosis of the vegetation condition. The images obtained constitute a highly effective tool for analyzing plant health. Maize samples with different lodging grades were obtained by visual interpretation, and the spectral reflectance, texture feature parameters, and vegetation indices of the training samples were extracted. Different feature transformations were performed, texture features and vegetation indices were combined, and various feature images were classified by maximum likelihood classification (MLC) to extract four lodging grades. Classification accuracy was evaluated using a confusion matrix based on the verification samples, and the features suitable for monitoring the maize lodging grade were screened. The results showed that compared with a multispectral image, the principal components, texture features, and combination of texture features and vegetation indices were improved by varying degrees. The overall accuracy of the combination of texture features and vegetation indices is 86.61%, and the Kappa coefficient is 0.8327, which is higher than that of other features. Therefore, the classification result based on the feature combinations of the UAV multispectral image is useful for monitoring of maize lodging grades.


2020 ◽  
Vol 12 (9) ◽  
pp. 1453
Author(s):  
Juan M. Sánchez ◽  
Joan M. Galve ◽  
José González-Piqueras ◽  
Ramón López-Urrea ◽  
Raquel Niclòs ◽  
...  

Downscaling techniques offer a solution to the lack of high-resolution satellite Thermal InfraRed (TIR) data and can bridge the gap until operational TIR missions accomplishing spatio-temporal requirements are available. These techniques are generally based on the Visible Near InfraRed (VNIR)-TIR variable relations at a coarse spatial resolution, and the assumption that the relationship between spectral bands is independent of the spatial resolution. In this work, we adopted a previous downscaling method and introduced some adjustments to the original formulation to improve the model performance. Maps of Land Surface Temperature (LST) with 10-m spatial resolution were obtained as output from the combination of MODIS/Sentinel-2 images. An experiment was conducted in an agricultural area located in the Barrax test site, Spain (39°03′35″ N, 2°06′ W), for the summer of 2018. Ground measurements of LST transects collocated with the MODIS overpasses were used for a robust local validation of the downscaling approach. Data from 6 different dates were available, covering a variety of croplands and surface conditions, with LST values ranging 300–325 K. Differences within ±4.0 K were observed between measured and modeled temperatures, with an average estimation error of ±2.2 K and a systematic deviation of 0.2 K for the full ground dataset. A further cross-validation of the disaggregated 10-m LST products was conducted using an additional set of Landsat-7/ETM+ images. A similar uncertainty of ±2.0 K was obtained as an average. These results are encouraging for the adaptation of this methodology to the tandem Sentinel-3/Sentinel-2, and are promising since the 10-m pixel size, together with the 3–5 days revisit frequency of Sentinel-2 satellites can fulfill the LST input requirements of the surface energy balance methods for a variety of hydrological, climatological or agricultural applications. However, certain limitations to capture the variability of extreme LST, or in recently sprinkler irrigated fields, claim the necessity to explore the implementation of soil moisture or vegetation indices sensitive to soil water content as inputs in the downscaling approach. The ground LST dataset introduced in this paper will be of great value for further refinements and assessments.


Author(s):  
Helge Aasen

Hyperspectral data has great potential for vegetation parameter retrieval. However, due to angular effects resulting from different sun-surface-sensor geometries, objects might appear differently depending on the position of an object within the field of view of a sensor. Recently, lightweight snapshot cameras have been introduced, which capture hyperspectral information in two spatial and one spectral dimension and can be mounted on unmanned aerial vehicles. <br><br> This study investigates the influence of the different viewing geometries within an image on the apparent hyperspectral reflection retrieved by these sensors. Additionally, it is evaluated how hyperspectral vegetation indices like the NDVI are effected by the angular effects within a single image and if the viewing geometry influences the apparent heterogeneity with an area of interest. The study is carried out for a barley canopy at booting stage. <br><br> The results show significant influences of the position of the area of interest within the image. The red region of the spectrum is more influenced by the position than the near infrared. The ability of the NDVI to compensate these effects was limited to the capturing positions close to nadir. The apparent heterogeneity of the area of interest is the highest close to a nadir.


2018 ◽  
Vol 11 (12) ◽  
pp. 6439-6479 ◽  
Author(s):  
Quintus Kleipool ◽  
Antje Ludewig ◽  
Ljubiša Babić ◽  
Rolf Bartstra ◽  
Remco Braak ◽  
...  

Abstract. The Sentinel-5 Precursor satellite was successfully launched on 13 October 2017, carrying the Tropospheric Monitoring Instrument (TROPOMI) as its single payload. TROPOMI is the next-generation atmospheric sounding instrument, continuing the successes of GOME, SCIAMACHY, OMI, and OMPS, with higher spatial resolution, improved sensitivity, and extended wavelength range. The instrument contains four spectrometers, divided over two modules sharing a common telescope, measuring the ultraviolet, visible, near-infrared, and shortwave infrared reflectance of the Earth. The imaging system enables daily global coverage using a push-broom configuration, with a spatial resolution as low as 7×3.5 km2 in nadir from a Sun-synchronous orbit at 824 km and an Equator crossing time of 13:30 local solar time. This article reports the pre-launch calibration status of the TROPOMI payload as derived from the on-ground calibration effort. Stringent requirements are imposed on the quality of on-ground calibration in order to match the high sensitivity of the instrument. A new methodology has been employed during the analysis of the obtained calibration measurements to ensure the consistency and validity of the calibration. This was achieved by using the production-grade Level 0 to 1b data processor in a closed-loop validation set-up. Using this approach the consistency between the calibration and the L1b product, as well as confidence in the obtained calibration result, could be established. This article introduces this novel calibration approach and describes all relevant calibrated instrument properties as they were derived before launch of the mission. For most of the relevant properties compliance with the calibration requirements could be established, including the knowledge of the instrument spectral and spatial response functions. Partial compliance was established for the straylight correction; especially the out-of-spectral-band correction for the near-infrared channel needs future validation. The absolute radiometric calibration of the radiance and irradiance responsivity is compliant with the high-level mission requirements, but not with the stricter calibration requirements as the available on-ground validation shows. The relative radiometric calibration of the Sun port was non-compliant. The non-compliant subjects will be addressed during the in-flight commissioning phase in the first 6 months following launch.


Author(s):  
Helge Aasen

Hyperspectral data has great potential for vegetation parameter retrieval. However, due to angular effects resulting from different sun-surface-sensor geometries, objects might appear differently depending on the position of an object within the field of view of a sensor. Recently, lightweight snapshot cameras have been introduced, which capture hyperspectral information in two spatial and one spectral dimension and can be mounted on unmanned aerial vehicles. &lt;br&gt;&lt;br&gt; This study investigates the influence of the different viewing geometries within an image on the apparent hyperspectral reflection retrieved by these sensors. Additionally, it is evaluated how hyperspectral vegetation indices like the NDVI are effected by the angular effects within a single image and if the viewing geometry influences the apparent heterogeneity with an area of interest. The study is carried out for a barley canopy at booting stage. &lt;br&gt;&lt;br&gt; The results show significant influences of the position of the area of interest within the image. The red region of the spectrum is more influenced by the position than the near infrared. The ability of the NDVI to compensate these effects was limited to the capturing positions close to nadir. The apparent heterogeneity of the area of interest is the highest close to a nadir.


Sign in / Sign up

Export Citation Format

Share Document