scholarly journals Experimental OMPS Radiance Assimilation through One-Dimensional Variational Analysis for Total Column Ozone in the Atmosphere

2021 ◽  
Vol 13 (17) ◽  
pp. 3418
Author(s):  
Quanhua Liu ◽  
Changyong Cao ◽  
Christopher Grassotti ◽  
Xingming Liang ◽  
Yong Chen

This experiment is the first ultraviolet radiance assimilation for atmospheric ozone in the troposphere and stratosphere. The experiment has provided better understanding of which observations need to be assimilated, what bias correction scheme may be optimal, and how to obtain surface reflectance. A key element is the extension of the Community Radiative Transfer Model (CRTM) to handle fully polarized radiances, which presents challenges in terms of computational resource requirements. In this study, a scalar (unpolarized) treatment of radiances was used. The surface reflectance plays an important role in assimilating the nadir mapper (NM) radiance of the Ozone Mapping and Profiler Suite (OMPS). Most OMPS NM measurements are affected by the surface reflection of solar radiation. We propose a linear spectral reflectance model that can be determined inline by fitting two OMPS NM channel radiances at 347.6 and 371.8 nm because the two channels have near zero sensitivity on atmospheric ozone. Assimilating a transformed reflectance measurement variable, the N value can overcome the difficulty in handling the large dynamic range of radiance and normalized radiance across the spectrum of the OMPS NM. It was found that the error in bias correction, surface reflectance, and neglecting polarization in radiative transfer calculations can be largely mitigated by using the two estimated surface reflectance. This study serves as a preliminary demonstration of direct ultraviolet radiance assimilation for total column ozone in the atmosphere.

Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
María Cazorla ◽  
René Parra ◽  
Edgar Herrera ◽  
Francisco Raimundo da Silva

In this study, we characterize atmospheric ozone over the tropical Andes in the boundary layer, the free troposphere, and the stratosphere; we quantify each contribution to total column ozone, and we evaluate the performance of the multi-sensor reanalysis (MSR2) in the region. Thus, we present data taken in Ecuador and Peru (2014–2019). The contribution from the surface was determined by integrating ozone concentrations measured in Quito and Cuenca (Ecuador) up to boundary layer height. In addition, tropospheric and stratospheric column ozone were quantified from ozone soundings (38) launched from Quito during the study time period. Profiles were compared against soundings at Natal (SHADOZ network) for being the closest observational reference with sufficient data in 2014–2019. Data were also compared against stratospheric mixing ratios from the Aura Microwave Limb Sounder (Aura MLS). Findings demonstrate that the stratospheric component of total column ozone over the Andes (225.2 ± 8.9 Dobson Units [DU]) is at similar levels as those observed at Natal (223.3 ± 8.6 DU), and observations are comparable to Aura MLS data. In contrast, the tropospheric contribution is lower over the Andes (20.2 ± 4.3 DU) when compared to Natal (35.4 ± 6.4 DU) due to a less deep and cleaner troposphere. From sounding extrapolation of Quito profiles down to sea level, we determined that altitude deducts about 5–7 DU from the total column, which coincides with a 3%–4% overestimation of the MSR2 over Quito and Marcapomacocha (Peru). In addition, when MSR2 data are compared along a transect that crosses from the Amazon over Quito, the Ecuadorian coast side, and into the Pacific, observations are not significantly different among the three first locations. Results point to coarse reanalysis resolution not being suitable to resolve the formidable altitude transition imposed by the Andes mountain chain. This work advances our knowledge of atmospheric ozone over the study region and provides a robust time series of upper air measurements for future evaluations of satellite and reanalysis products.


2018 ◽  
Author(s):  
Yves J. Rochon ◽  
Michael Sitwell ◽  
Young-Min Cho

Abstract. The impact of assimilating total column ozone datasets from single and multiple satellite data sources with and without bias correction has been examined with a version of the Environment and Climate Change Canada variational assimilation and forecasting system. The assimilated and evaluated data sources include the Global Ozone Monitoring Experiment-2 instruments on the MetOp-A and MetOp-B satellites (GOME-2A and GOME-2B), the total column ozone mapping instrument of the Ozone Mapping Profiler Suite (OMPS-NM) on the Suomi National Polar-orbiting Partnership (S-NPP) satellite, and the Ozone Monitoring Instrument (OMI) instrument on the Aura research satellite. Ground-based Brewer and Dobson spectrophotometers, and filter ozonometers, as well as the Solar Backscatter Ultraviolet satellite instrument (SBUV/2), served as independent validation sources for total column ozone. Regional and global mean differences of the OMI-TOMS data with measurements from the three ground-based instrument types for the three evaluated two month periods were found to be within 1 %, except for the polar regions with the largest differences from the comparatively small dataset in Antarctica exceeding 3 %. Values from SBUV/2 summed partial columns were typically larger than OMI-TOMS on average by 0.6 to 1.2 ± 0.7 %, with smaller differences than with ground-based over Antarctica. OMI-TOMS was chosen as the reference used in the bias correction instead of the ground-based observations due to OMI’s significantly better spatial and temporal coverage and interest in near-real time assimilation. Bias corrections as a function of latitude and solar zenith angle were performed with a two-week moving window using colocation with OMI-TOMS and three variants of differences with short-term forecasts. These approaches are shown to yield residual biases of less than 1 %, with the rare exceptions associated with bins with less data. These results were compared to a time-independent bias correction estimation that used colocations as a function of ozone effective temperature and solar zenith angle which, for the time period examined, resulted in larger changes in residual biases as a function of time for some cases. Assimilation experiments for the July-August 2014 period show a reduction of global and temporal mean biases for short-term forecasts relative to ground-based Brewer and Dobson data from a maximum of about 2.3 % in the absence of bias correction to less than 0.3 % in size when bias correction is included. Both temporally averaged and time varying mean differences of forecasts with OMI-TOMS are reduced to within 1 % for nearly all cases when bias corrected observations are assimilated for the latitudes where satellite data is present. The impact of bias correction on the standard deviations and anomaly correlation coefficients of forecast differences to OMI-TOMS is noticeable but small compared to the impact of introducing any total column ozone assimilation. The assimilation of total column ozone data can result in some improvement, as well as some deterioration, in the vertical structure of forecasts when comparing to Aura-MLS and ozonesonde profiles. The most significant improvement in the vertical domain from the assimilation of total column ozone alone is seen in the anomaly correlation coefficients in the tropical lower stratosphere, which increases from a minimum of 0.1 to about 0.6. Nonetheless, it is made evident that the quality of the vertical structure is most improved when also assimilating ozone profile data, which only weakly affects the total column short-term forecasts.


2019 ◽  
Vol 19 (14) ◽  
pp. 9431-9451 ◽  
Author(s):  
Yves J. Rochon ◽  
Michael Sitwell ◽  
Young-Min Cho

Abstract. Bias estimations and corrections of total column measurements are applied and evaluated with ozone data from satellite instruments providing near-real-time products during summer 2014 and 2015 and winter 2015. The developed standalone bias-correction system can be applied in near-real-time chemical data assimilation and long-term reanalysis. The instruments to which these bias corrections were applied include the Global Ozone Monitoring Experiment-2 instruments on the MetOp-A and MetOp-B satellites (GOME-2A and GOME-2B), the total column ozone mapping instrument of the Ozone Mapping Profiler Suite (OMPS-NM) on the Suomi National Polar-orbiting Partnership (S-NPP) satellite, and the Ozone Monitoring Instrument (OMI) instrument on the Aura research satellite. The OMI data set based on the TOMS version 8.5 retrieval algorithm was chosen as the reference used in the bias correction of the other satellite-based total column ozone data sets. OMI data were chosen for this purpose instead of ground-based observations due to OMI's significantly better spatial and temporal coverage, as well as interest in near-real-time assimilation. Ground-based Brewer and Dobson spectrophotometers, and filter ozonometers, as well as the Solar Backscatter Ultraviolet satellite instrument (SBUV/2), served as independent validation sources of total column ozone data. Regional and global mean differences of the OMI-TOMS data with measurements from the three ground-based instrument types for the three evaluated 2-month periods were found to be within 1 %, except for the polar regions, where the largest differences from the comparatively small data set in Antarctica exceeded 3 %. Values from SBUV/2 summed partial columns were typically larger than OMI-TOMS on average by 0.6 % to 1.2 %, with smaller differences than with ground-based observations over Antarctica. Bias corrections as a function of latitude and solar zenith angle were performed for GOME-2A/B and OMPS-NM using colocation with OMI-TOMS and three variants of differences with short-term model forecasts. These approaches were shown to yield residual biases of less than 1 %, with the rare exceptions associated with bins with less data. These results were compared to a time-independent bias-correction estimation that used colocations as a function of ozone effective temperature and solar zenith angle which, for the time period examined, resulted in larger residual biases for bins whose bias varies more in time. The impact of assimilating total column ozone data from single and multiple satellite data sources with and without bias correction was examined with a version of the Environment and Climate Change Canada variational assimilation and forecasting system. Assimilation experiments for July–August 2014 show a reduction of global mean biases for short-term forecasts relative to ground-based Brewer and Dobson observations from a maximum of about 2.3 % in the absence of bias correction to less than 0.3 % in size when bias correction is included. Both temporally averaged and time-varying mean differences of forecasts with OMI-TOMS were reduced to within 1 % for nearly all cases when bias-corrected observations are assimilated for the latitudes where satellite data are present.


2020 ◽  
Vol 98 (2) ◽  
pp. 353-377
Author(s):  
Hiroaki NAOE ◽  
Takanori MATSUMOTO ◽  
Keisuke UENO ◽  
Takashi MAKI ◽  
Makoto DEUSHI ◽  
...  

2021 ◽  
Author(s):  
Marta Luffarelli ◽  
Yves Govaerts

<p>The CISAR (Combined Inversion of Surface and AeRosols) algorithm is exploited in the framework of the ESA Aerosol Climate Change Initiatiave (CCI) project, aiming at providing a set of atmospheric (cloud and aerosol) and surface reflectance products derived from S3A/SLSTR observations using the same radiative transfer physics and assumptions. CISAR is an advance algorithm developed by Rayference originally designed for the retrieval of aerosol single scattering properties and surface reflectance from both geostationary and polar orbiting satellite observations.  It is based on the inversion of a fast radiative transfer model (FASTRE). The retrieval mechanism allows a continuous variation of the aerosol and cloud single scattering properties in the solution space.</p><p> </p><p>Traditionally, different approaches are exploited to retrieve the different Earth system components, which could lead to inconsistent data sets. The simultaneous retrieval of different atmospheric and surface variables over any type of surface (including bright surfaces and water bodies) with the same forward model and inversion scheme ensures the consistency among the retrieved Earth system components. Additionally, pixels located in the transition zone between pure clouds and pure aerosols are often discarded from both cloud and aerosol algorithms. This “twilight zone” can cover up to 30% of the globe. A consistent retrieval of both cloud and aerosol single scattering properties with the same algorithm could help filling this gap.</p><p> </p><p>The CISAR algorithm aims at overcoming the need of an external cloud mask, discriminating internally between aerosol and cloud properties. This approach helps reducing the overestimation of aerosol optical thickness in cloud contaminated pixels. The surface reflectance product is delivered both for cloud-free and cloudy observations.  </p><p> </p><p>Global maps obtained from the processing of S3A/SLSTR observations will be shown. The SLSTR/CISAR products over events such as, for instance, the Australian fire in the last months of 2019, will be discussed in terms of aerosol optical thickness, aerosol-cloud discrimination and fine/coarse mode fraction.</p>


2015 ◽  
Vol 8 (10) ◽  
pp. 4487-4505 ◽  
Author(s):  
K.-L. Chang ◽  
S. Guillas ◽  
V. E. Fioletov

Abstract. Total column ozone variations estimated using ground-based stations provide important independent source of information in addition to satellite-based estimates. This estimation has been vigorously challenged by data inhomogeneity in time and by the irregularity of the spatial distribution of stations, as well as by interruptions in observation records. Furthermore, some stations have calibration issues and thus observations may drift. In this paper we compare the spatial interpolation of ozone levels using the novel stochastic partial differential equation (SPDE) approach with the covariance-based kriging. We show how these new spatial predictions are more accurate, less uncertain and more robust. We construct long-term zonal means to investigate the robustness against the absence of measurements at some stations as well as instruments drifts. We conclude that time series analyzes can benefit from the SPDE approach compared to the covariance-based kriging when stations are missing, but the positive impact of the technique is less pronounced in the case of drifts.


2013 ◽  
Vol 6 (6) ◽  
pp. 10081-10115 ◽  
Author(s):  
E. W. Chiou ◽  
P. K. Bhartia ◽  
R. D. McPeters ◽  
D. G. Loyola ◽  
M. Coldewey-Egbers ◽  
...  

Abstract. This paper describes the comparison of the variability of total column ozone inferred from the three independent multi-year data records, namely, (i) SBUV(v8.6) profile total ozone, (ii) GTO(GOME-Type total ozone), and (iii) Ground-based total ozone data records covering the 16-yr overlap period (March 1996 through June 2011). Analyses are conducted based on area weighted zonal means for (0–30° S), (0–30° N), (50–30° S), and (30–60° N). It has been found that on average, the differences in monthly zonal mean total ozone vary between −0.32 to 0.76 % and are well within 1%. For "GTO minus SBUV", the standard deviations and ranges (maximum minus minimum) of the differences regarding monthly zonal mean total ozone vary between 0.58 to 0.66% and 2.83 to 3.82% respectively, depending on the latitude band. The corresponding standard deviations and ranges regarding the differences in monthly zonal mean anomalies show values between 0.40 to 0.59% and 2.19 to 3.53%. The standard deviations and ranges of the differences "Ground-based minus SBUV" regarding both monthly zonal means and anomalies are larger by a factor of 1.4 to 2.9 in comparison to "GTO minus SBUV". The Ground-based zonal means, while show no systematic differences, demonstrate larger scattering of monthly data compared to satellite-based records. The differences in the scattering are significantly reduced if seasonal zonal averages are analyzed. The trends of the differences "GTO minus SBUV" and "Ground-based minus SBUV" are found to vary between −0.04 and 0.12% yr−1 (−0.11 and 0.31 DU yr−1). These negligibly small trends have provided strong evidence that there are no significant time dependent differences among these multi-year total ozone data records. Analyses of the deviations from pre-1980 level indicate that for the overlap period of 1996 to 2010, all three data records show gradual recovery at (30–60° N) from −5% in 1996 to −2% in 2010. The corresponding recovery at (50–30° S) is not as obvious until after 2006.


Sign in / Sign up

Export Citation Format

Share Document