scholarly journals On-Board Volcanic Eruption Detection through CNNs and Satellite Multispectral Imagery

2021 ◽  
Vol 13 (17) ◽  
pp. 3479
Author(s):  
Maria Pia Del Rosso ◽  
Alessandro Sebastianelli ◽  
Dario Spiller ◽  
Pierre Philippe Mathieu ◽  
Silvia Liberata Ullo

In recent years, the growth of Machine Learning (ML) algorithms has raised the number of studies including their applicability in a variety of different scenarios. Among all, one of the hardest ones is the aerospace, due to its peculiar physical requirements. In this context, a feasibility study, with a prototype of an on board Artificial Intelligence (AI) model, and realistic testing equipment and scenario are presented in this work. As a case study, the detection of volcanic eruptions has been investigated with the objective to swiftly produce alerts and allow immediate interventions. Two Convolutional Neural Networks (CNNs) have been designed and realized from scratch, showing how to efficiently implement them for identifying the eruptions and at the same time adapting their complexity in order to fit on board requirements. The CNNs are then tested with experimental hardware, by means of a drone with a paylod composed of a generic processing unit (Raspberry PI), an AI processing unit (Movidius stick) and a camera. The hardware employed to build the prototype is low-cost, easy to found and to use. Moreover, the dataset has been published on GitHub, made available to everyone. The results are promising and encouraging toward the employment of the proposed system in future missions, given that ESA has already moved the first steps of AI on board with the Phisat-1 satellite, launched on September 2020.

2020 ◽  
Vol 7 (1) ◽  
pp. 2-3
Author(s):  
Shadi Saleh

Deep learning and machine learning innovations are at the core of the ongoing revolution in Artificial Intelligence for the interpretation and analysis of multimedia data. The convergence of large-scale datasets and more affordable Graphics Processing Unit (GPU) hardware has enabled the development of neural networks for data analysis problems that were previously handled by traditional handcrafted features. Several deep learning architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short Term Memory (LSTM)/Gated Recurrent Unit (GRU), Deep Believe Networks (DBN), and Deep Stacking Networks (DSNs) have been used with new open source software and libraries options to shape an entirely new scenario in computer vision processing.


Author(s):  
Semra Erpolat Taşabat ◽  
Olgun Aydin

Deep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities, security, automated machines. In this chapter, brief information about DL theory is given, advantages and disadvantages of deep learning are discussed, most used types of DNN are mentioned, popular DL architectures and frameworks are glanced and aimed to build smart systems for the finance and real estate domains. Finally, a case study about image recognition using transfer learning is developed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lara Lloret Iglesias ◽  
Pablo Sanz Bellón ◽  
Amaia Pérez del Barrio ◽  
Pablo Menéndez Fernández-Miranda ◽  
David Rodríguez González ◽  
...  

AbstractDeep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural networks has drastically improved the learning capabilities of computer vision applications, being able to directly consider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.


2016 ◽  
Vol 19 (58) ◽  
pp. 23 ◽  
Author(s):  
Julia M. Núñez Tabale ◽  
Francisco J. Rey Carmona ◽  
José Mª Caridad y Ocerin

The econometric approach to obtain the value of a property began with hedonic modelling, which were based on a set of property attributes, internal or external, associated to each particular dwelling. The final sale value can be estimated, and also the marginal prices of each exogenous explanatory variable. A good alternative to the hedonic approach is based on several Artificial Intelligence (AI) techniques, such as artificial neural networks (ANN), these tend to be more precise. Both methodologies are compared, and a case study is developed using data from Seville, the larger town in the South of Spain.


2021 ◽  
Author(s):  
Nicholas Parkyn

Emerging heterogeneous computing, computing at the edge, machine learning and AI at the edge technology drives approaches and techniques for processing and analysing onboard instrument data in near real-time. The author has used edge computing and neural networks combined with high performance heterogeneous computing platforms to accelerate AI workloads. Heterogeneous computing hardware used is readily available, low cost, delivers impressive AI performance and can run multiple neural networks in parallel. Collecting, processing and machine learning from onboard instruments data in near real-time is not a trivial problem due to data volumes, complexities of data filtering, data storage and continual learning. Little research has been done on continual machine learning which aims at a higher level of machine intelligence through providing the artificial agents with the ability to learn from a non-stationary and never-ending stream of data. The author has applied the concept of continual learning to building a system that continually learns from actual boat performance and refines predictions previously done using static VPP data. The neural networks used are initially trained using the output from traditional VPP software and continue to learn from actual data collected under real sailing conditions. The author will present the system design, AI, and edge computing techniques used and the approaches he has researched for incremental training to realise continual learning.


2020 ◽  
pp. 57-63
Author(s):  
admin admin ◽  
◽  
◽  
◽  
◽  
...  

The human facial emotions recognition has attracted interest in the field of Artificial Intelligence. The emotions on a human face depicts what’s going on inside the mind. Facial expression recognition is the part of Facial recognition which is gaining more importance and need for it increases tremendously. Though there are methods to identify expressions using machine learning and Artificial Intelligence techniques, this work attempts to use convolution neural networks to recognize expressions and classify the expressions into 6 emotions categories. Various datasets are investigated and explored for training expression recognition models are explained in this paper and the models which are used in this paper are VGG 19 and RESSNET 18. We included facial emotional recognition with gender identification also. In this project we have used fer2013 and ck+ dataset and ultimately achieved 73% and 94% around accuracies respectively.


2020 ◽  
Vol 25 (2) ◽  
pp. 7-13
Author(s):  
Zhangozha A.R. ◽  

On the example of the online game Akinator, the basic principles on which programs of this type are built are considered. Effective technics have been proposed by which artificial intelligence systems can build logical inferences that allow to identify an unknown subject from its description (predicate). To confirm the considered hypotheses, the terminological analysis of definition of the program "Akinator" offered by the author is carried out. Starting from the assumptions given by the author's definition, the article complements their definitions presented by other researchers and analyzes their constituent theses. Finally, some proposals are made for the next steps in improving the program. The Akinator program, at one time, became one of the most famous online games using artificial intelligence. And although this was not directly stated, it was clear to the experts in the field of artificial intelligence that the program uses the techniques of expert systems and is built on inference rules. At the moment, expert systems have lost their positions in comparison with the direction of neural networks in the field of artificial intelligence, however, in the case considered in the article, we are talking about techniques using both directions – hybrid systems. Games for filling semantics interact with the user, expanding their semantic base (knowledge base) and use certain strategies to achieve the best result. The playful form of such semantics filling programs is beneficial for researchers by involving a large number of players. The article examines the techniques used by the Akinator program, and also suggests possible modifications to it in the future. This study, first of all, focuses on how the knowledge base of the Akinator program is built, it consists of incomplete sets, which can be filled and adjusted as a result of further iterations of the program launches. It is important to note our assumption that the order of questions used by the program during the game plays a key role, because it determines its strategy. It was identified that the program is guided by the principles of nonmonotonic logic – the assumptions constructed by the program are not final and can be rejected by it during the game. The three main approaches to acquisite semantics proposed by Jakub Šimko and Mária Bieliková are considered, namely, expert work, crowdsourcing and machine learning. Paying attention to machine learning, the Akinator program using machine learning to build an effective strategy in the game presents a class of hybrid systems that combine the principles of two main areas in artificial intelligence programs – expert systems and neural networks.


2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>


Sign in / Sign up

Export Citation Format

Share Document