scholarly journals Deriving Aerodynamic Roughness Length at Ultra-High Resolution in Agricultural Areas Using UAV-Borne LiDAR

2021 ◽  
Vol 13 (17) ◽  
pp. 3538
Author(s):  
Katerina Trepekli ◽  
Thomas Friborg

The aerodynamic roughness length (Z0) and surface geometry at ultra-high resolution in precision agriculture and agroforestry have substantial potential to improve aerodynamic process modeling for sustainable farming practices and recreational activities. We explored the potential of unmanned aerial vehicle (UAV)-borne LiDAR systems to provide Z0 maps with the level of spatiotemporal resolution demanded by precision agriculture by generating the 3D structure of vegetated surfaces and linking the derived geometry with morphometric roughness models. We evaluated the performance of three filtering algorithms to segment the LiDAR-derived point clouds into vegetation and ground points in order to obtain the vegetation height metrics and density at a 0.10 m resolution. The effectiveness of three morphometric models to determine the Z0 maps of Danish cropland and the surrounding evergreen trees was assessed by comparing the results with corresponding Z0 values from a nearby eddy covariance tower (Z0_EC). A morphological filter performed satisfactorily over a homogeneous surface, whereas the progressive triangulated irregular network densification algorithm produced fewer errors with a heterogeneous surface. Z0 from UAV-LiDAR-driven models converged with Z0_EC at the source area scale. The Raupach roughness model appropriately simulated temporal variations in Z0 conditioned by vertical and horizontal vegetation density. The Z0 calculated as a fraction of vegetation height or as a function of vegetation height variability resulted in greater differences with the Z0_EC. Deriving Z0 in this manner could be highly useful in the context of surface energy balance and wind profile estimations for micrometeorological, hydrologic, and ecologic applications in similar sites.

2012 ◽  
Vol 5 (2) ◽  
pp. 2933-2957
Author(s):  
C. Prigent ◽  
C. Jiménez ◽  
J. Catherinot

Abstract. Previous studies examined the possibility to estimate the aeolian aerodynamic roughness length from satellites, either from visible/near-infrared observations or from microwave backscattering measurements. Here we compare the potential of the two approaches and propose to merge the two sources of information to benefit from their complementary aspects, i.e. the high spatial resolution of the visible/near-infrared (PARASOL part of the A-Train) and the independence from atmospheric contamination of the active microwaves (ASCAT on board MetOp). A global map of the aeolian aerodynamic roughness length at 6 km resolution is derived, for arid and semi-arid regions. It shows very good consistency with the existing information on the properties of these surfaces. The dataset is available to the community, for use in atmospheric dust transport models.


2010 ◽  
Vol 14 (12) ◽  
pp. 2661-2669 ◽  
Author(s):  
J. Colin ◽  
R. Faivre

Abstract. Roughness length of land surfaces is an essential variable for the parameterisation of momentum and heat exchanges. The growing interest in the estimation of the surface turbulent flux parameterisation from passive remote sensing leads to an increasing development of models, and the common use of simple semi-empirical formulations to estimate surface roughness. Over complex surface land cover, these approaches would benefit from the combined use of passive remote sensing and land surface structure measurements from Light Detection And Ranging (LIDAR) techniques. Following early studies based on LIDAR profile data, this paper explores the use of imaging LIDAR measurements for the estimation of the aerodynamic roughness length over a heterogeneous landscape of the Heihe river basin, a typical inland river basin in the northwest of China. The point cloud obtained from multiple flight passes over an irrigated farmland area were used to separate the land surface topography and the vegetation canopy into a Digital Elevation Model (DEM) and a Digital Surface Model (DSM) respectively. These two models were then incorporated in two approaches: (i) a strictly geometrical approach based on the calculation of the plan surface density and the frontal surface density to derive a geometrical surface roughness; (ii) a more aerodynamic approach where both the DEM and DSM are introduced in a Computational Fluid Dynamics model (CFD). The inversion of the resulting 3-D wind field leads to a fine representation of the aerodynamic surface roughness. Examples of the use of these three approaches are presented for various wind directions together with a cross-comparison of results on heterogeneous land cover and complex roughness element structures.


2022 ◽  
Vol 183 ◽  
pp. 336-351
Author(s):  
Zhong Peng ◽  
Ronglin Tang ◽  
Yazhen Jiang ◽  
Meng Liu ◽  
Zhao-Liang Li

2002 ◽  
Vol 104 (1) ◽  
pp. 151-163 ◽  
Author(s):  
Xue Xian ◽  
Wang Tao ◽  
Sun Qingwei ◽  
Zhang Weimin

Sign in / Sign up

Export Citation Format

Share Document