scholarly journals Soil Moisture Retrieval over a Vegetation-Covered Area Using ALOS-2 L-Band Synthetic Aperture Radar Data

2021 ◽  
Vol 13 (19) ◽  
pp. 3894
Author(s):  
Ya Gao ◽  
Maofang Gao ◽  
Liguo Wang ◽  
Offer Rozenstein

Soil moisture (SM) plays a significant part in regional hydrological and meteorological systems throughout Earth. It is considered an indispensable state variable in earth science. The high sensitivity of microwave remote sensing to soil moisture, and its ability to function under all weather conditions at all hours of the day, has led to its wide application in SM retrieval. The aim of this study is to evaluate the ability of ALOS-2 data to estimate SM in areas with high vegetation coverage. Through the water cloud model (WCM), the article simulates the scene coupling between active microwave images and optical data. Subsequently, we use a genetic algorithm to optimize back propagation (GA-BP) neural network technology to retrieve SM. The vegetation descriptors of the WCM, derived from optical images, were the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the normalized multi-band drought index (NMDI). In the vegetation-covered area, 240 field soil samples were collected simultaneously with the ALOS-2 SAR overpass. Soil samples at two depths (0–10 cm, 20–30 cm) were collected at each sampling site. The backscattering of the ALOS-2 with the copolarization was found to be more sensitive to SM than the crosspolarization. In addition, the sensitivity of the soil backscattering coefficient to SM at a depth of 0–10 cm was higher than at a depth of 20–30 cm. At a 0–10 cm depth, the best results were the mean square error (MAE) of 2.248 vol%, the root mean square error (RMSE) of 3.146 vol%, and the mean absolute percentage error (MAPE) of 0.056 vol%, when the vegetation is described as by the NDVI. At a 20–30 cm depth, the best results were an MAE of 2.333 vol%, an RMSE of 2.882 vol%, a MAPE of 0.067 vol%, with the NMDI as the vegetation description. The use of the GA-BP NNs method for SM inversion presented in this paper is novel. Moreover, the results revealed that ALOS-2 data is a valuable source for SM estimation, and ALOS-2 L-band data was sensitive to SM even under vegetation cover.

1978 ◽  
Vol 48 ◽  
pp. 227-228
Author(s):  
Y. Requième

In spite of important delays in the initial planning, the full automation of the Bordeaux meridian circle is progressing well and will be ready for regular observations by the middle of the next year. It is expected that the mean square error for one observation will be about ±0.”10 in the two coordinates for declinations up to 87°.


2018 ◽  
Vol 934 (4) ◽  
pp. 59-62
Author(s):  
V.I. Salnikov

The question of calculating the limiting values of residuals in geodesic constructions is considered in the case when the limiting value for measurement errors is assumed equal to 3m, ie ∆рred = 3m, where m is the mean square error of the measurement. Larger errors are rejected. At present, the limiting value for the residual is calculated by the formula 3m√n, where n is the number of measurements. The article draws attention to two contradictions between theory and practice arising from the use of this formula. First, the formula is derived from the classical law of the normal Gaussian distribution, and it is applied to the truncated law of the normal distribution. And, secondly, as shown in [1], when ∆рred = 2m, the sums of errors naturally take the value equal to ?pred, after which the number of errors in the sum starts anew. This article establishes its validity for ∆рred = 3m. A table of comparative values of the tolerances valid and recommended for more stringent ones is given. The article gives a graph of applied and recommended tolerances for ∆рred = 3m.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Xiaodong Huang ◽  
Beth Ziniti ◽  
Michael H. Cosh ◽  
Michele Reba ◽  
Jinfei Wang ◽  
...  

Soil moisture is a key indicator to assess cropland drought and irrigation status as well as forecast production. Compared with the optical data which are obscured by the crop canopy cover, the Synthetic Aperture Radar (SAR) is an efficient tool to detect the surface soil moisture under the vegetation cover due to its strong penetration capability. This paper studies the soil moisture retrieval using the L-band polarimetric Phased Array-type L-band SAR 2 (PALSAR-2) data acquired over the study region in Arkansas in the United States. Both two-component model-based decomposition (SAR data alone) and machine learning (SAR + optical indices) methods are tested and compared in this paper. Validation using independent ground measurement shows that the both methods achieved a Root Mean Square Error (RMSE) of less than 10 (vol.%), while the machine learning methods outperform the model-based decomposition, achieving an RMSE of 7.70 (vol.%) and R2 of 0.60.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1631
Author(s):  
Bruno Guilherme Martini ◽  
Gilson Augusto Helfer ◽  
Jorge Luis Victória Barbosa ◽  
Regina Célia Espinosa Modolo ◽  
Marcio Rosa da Silva ◽  
...  

The application of ubiquitous computing has increased in recent years, especially due to the development of technologies such as mobile computing, more accurate sensors, and specific protocols for the Internet of Things (IoT). One of the trends in this area of research is the use of context awareness. In agriculture, the context involves the environment, for example, the conditions found inside a greenhouse. Recently, a series of studies have proposed the use of sensors to monitor production and/or the use of cameras to obtain information about cultivation, providing data, reminders, and alerts to farmers. This article proposes a computational model for indoor agriculture called IndoorPlant. The model uses the analysis of context histories to provide intelligent generic services, such as predicting productivity, indicating problems that cultivation may suffer, and giving suggestions for improvements in greenhouse parameters. IndoorPlant was tested in three scenarios of the daily life of farmers with hydroponic production data that were obtained during seven months of cultivation of radicchio, lettuce, and arugula. Finally, the article presents the results obtained through intelligent services that use context histories. The scenarios used services to recommend improvements in cultivation, profiles and, finally, prediction of the cultivation time of radicchio, lettuce, and arugula using the partial least squares (PLS) regression technique. The prediction results were relevant since the following values were obtained: 0.96 (R2, coefficient of determination), 1.06 (RMSEC, square root of the mean square error of calibration), and 1.94 (RMSECV, square root of the mean square error of cross validation) for radicchio; 0.95 (R2), 1.37 (RMSEC), and 3.31 (RMSECV) for lettuce; 0.93 (R2), 1.10 (RMSEC), and 1.89 (RMSECV) for arugula. Eight farmers with different functions on the farm filled out a survey based on the technology acceptance model (TAM). The results showed 92% acceptance regarding utility and 98% acceptance for ease of use.


2020 ◽  
Vol 12 (13) ◽  
pp. 2123 ◽  
Author(s):  
Leran Han ◽  
Chunmei Wang ◽  
Tao Yu ◽  
Xingfa Gu ◽  
Qiyue Liu

This paper proposes a combined approach comprising a set of methods for the high-precision mapping of soil moisture in a study area located in Jiangsu Province of China, based on the Chinese C-band synthetic aperture radar data of GF-3 and high spatial-resolution optical data of GF-1, in situ experimental datasets and background knowledge. The study was conducted in three stages: First, in the process of eliminating the effect of vegetation canopy, an empirical vegetation water content model and a water cloud model with localized parameters were developed to obtain the bare soil backscattering coefficient. Second, four commonly used models (advanced integral equation model (AIEM), look-up table (LUT) method, Oh model, and the Dubois model) were coupled to acquire nine soil moisture retrieval maps and algorithms. Finally, a simple and effective optimal solution method was proposed to select and combine the nine algorithms based on classification strategies devised using three types of background knowledge. A comprehensive evaluation was carried out on each soil moisture map in terms of the root-mean-square-error (RMSE), Pearson correlation coefficient (PCC), mean absolute error (MAE), and mean bias (bias). The results show that for the nine individual algorithms, the estimated model constructed using the AIEM (mv1) was significantly more accurate than those constructed using the other models (RMSE = 0.0321 cm³/cm³, MAE = 0.0260 cm³/cm³, and PCC = 0.9115), followed by the Oh model (m_v5) and LUT inversion method under HH polarization (mv2). Compared with the independent algorithms, the optimal solution methods have significant advantages; the soil moisture map obtained using the classification strategy based on the percentage content of clay was the most satisfactory (RMSE = 0.0271 cm³/cm³, MAE = 0.0225 cm³/cm³, and PCC = 0.9364). This combined method could not only effectively integrate the optical and radar satellite data but also couple a variety of commonly used inversion models, and at the same time, background knowledge was introduced into the optimal solution method. Thus, we provide a new method for the high-precision mapping of soil moisture in areas with a complex underlying surface.


2011 ◽  
Vol 57 (7) ◽  
pp. 4622-4635 ◽  
Author(s):  
Bernhard G. Bodmann ◽  
Pankaj K. Singh

2020 ◽  
Vol 12 (1) ◽  
pp. 1666-1678
Author(s):  
Mohammed H. Aljahdali ◽  
Mohamed Elhag

AbstractRabigh is a thriving coastal city located at the eastern bank of the Red Sea, Saudi Arabia. The city has suffered from shoreline destruction because of the invasive tidal action powered principally by the wind speed and direction over shallow waters. This study was carried out to calibrate the water column depth in the vicinity of Rabigh. Optical and microwave remote sensing data from the European Space Agency were collected over 2 years (2017–2018) along with the analog daily monitoring of tidal data collected from the marine station of Rabigh. Depth invariant index (DII) was implemented utilizing the optical data, while the Wind Field Estimation algorithm was implemented utilizing the microwave data. The findings of the current research emphasis on the oscillation behavior of the depth invariant mean values and the mean astronomical tides resulted in R2 of 0.75 and 0.79, respectively. Robust linear regression was established between the astronomical tide and the mean values of the normalized DII (R2 = 0.81). The findings also indicated that January had the strongest wind speed solidly correlated with the depth invariant values (R2 = 0.92). Therefore, decision-makers can depend on remote sensing data as an efficient tool to monitor natural phenomena and also to regulate human activities in fragile ecosystems.


2021 ◽  
pp. 58-60
Author(s):  
Naziru Fadisanku Haruna ◽  
Ran Vijay Kumar Singh ◽  
Samsudeen Dahiru

In This paper a modied ratio-type estimator for nite population mean under stratied random sampling using single auxiliary variable has been proposed. The expression for mean square error and bias of the proposed estimator are derived up to the rst order of approximation. The expression for minimum mean square error of proposed estimator is also obtained. The mean square error the proposed estimator is compared with other existing estimators theoretically and condition are obtained under which proposed estimator performed better. A real life population data set has been considered to compare the efciency of the proposed estimator numerically.


Sign in / Sign up

Export Citation Format

Share Document