scholarly journals Parameter Estimation Based on a Local Ensemble Transform Kalman Filter Applied to El Niño–Southern Oscillation Ensemble Prediction

2021 ◽  
Vol 13 (19) ◽  
pp. 3923
Author(s):  
Yanqiu Gao ◽  
Youmin Tang ◽  
Xunshu Song ◽  
Zheqi Shen

Parameter estimation plays an important role in reducing model error and thus is of great significance to improve the simulation and prediction capabilities of the model. However, due to filtering divergence, parameter estimation by ensemble-based filters still faces great challenges. Previous studies have shown that a covariance inflation scheme could alleviate the filtering divergence problem by increasing the signal-to-noise ratio of the state-parameter covariance. In this study, we proposed a new inflation scheme based on a local ensemble transform Kalman filter (LETKF). With the new scheme, the Zebiak–Cane (Z-C) model parameters were estimated by assimilating the sea surface temperature anomaly (SSTA) data. The effectiveness of the parameter estimation and its influence on El Niño–Southern Oscillation (ENSO) prediction were evaluated in an observation system simulation experiments (OSSE) framework and real-world scenario, respectively. With the utilization of the OSSE framework, the results showed that the model parameters were successfully estimated. Parameter estimation reduced the model error when compared with only state estimation (onlySE); however, multiple parameter estimation (MPE) further improved the ENSO prediction skill by providing better initial conditions and parameter values than the single parameter estimation (SPE). Parameter estimation could thus alleviate the spring prediction barrier (SPB) phenomenon of ENSO to a certain extent. In real-world experiments, the optimized parameters significantly improved the ENSO forecasting skill, primarily in prediction of warm events. This study provides an effective parameter estimation strategy to improve climate models and further climate predictions in the real world.

2018 ◽  
Vol 25 (4) ◽  
pp. 731-746 ◽  
Author(s):  
Sangeetika Ruchi ◽  
Svetlana Dubinkina

Abstract. Over the years data assimilation methods have been developed to obtain estimations of uncertain model parameters by taking into account a few observations of a model state. The most reliable Markov chain Monte Carlo (MCMC) methods are computationally expensive. Sequential ensemble methods such as ensemble Kalman filters and particle filters provide a favorable alternative. However, ensemble Kalman filter has an assumption of Gaussianity. Ensemble transform particle filter does not have this assumption and has proven to be highly beneficial for an initial condition estimation and a small number of parameter estimations in chaotic dynamical systems with non-Gaussian distributions. In this paper we employ ensemble transform particle filter (ETPF) and ensemble transform Kalman filter (ETKF) for parameter estimation in nonlinear problems with 1, 5, and 2500 uncertain parameters and compare them to importance sampling (IS). The large number of uncertain parameters is of particular interest for subsurface reservoir modeling as it allows us to parameterize permeability on the grid. We prove that the updated parameters obtained by ETPF lie within the range of an initial ensemble, which is not the case for ETKF. We examine the performance of ETPF and ETKF in a twin experiment setup, where observations of pressure are synthetically created based on the known values of parameters. For a small number of uncertain parameters (one and five) ETPF performs comparably to ETKF in terms of the mean estimation. For a large number of uncertain parameters (2500) ETKF is robust with respect to the initial ensemble, while ETPF is sensitive due to sampling error. Moreover, for the high-dimensional test problem ETPF gives an increase in the root mean square error after data assimilation is performed. This is resolved by applying distance-based localization, which however deteriorates a posterior estimation of the leading mode by largely increasing the variance due to a combination of less varying localized weights, not keeping the imposed bounds on the modes via the Karhunen–Loeve expansion, and the main variability explained by the leading mode. A possible remedy is instead of applying localization to use only leading modes that are well estimated by ETPF, which demands knowledge of which mode to truncate.


2017 ◽  
Vol 145 (11) ◽  
pp. 4575-4592 ◽  
Author(s):  
Craig H. Bishop ◽  
Jeffrey S. Whitaker ◽  
Lili Lei

To ameliorate suboptimality in ensemble data assimilation, methods have been introduced that involve expanding the ensemble size. Such expansions can incorporate model space covariance localization and/or estimates of climatological or model error covariances. Model space covariance localization in the vertical overcomes problematic aspects of ensemble-based satellite data assimilation. In the case of the ensemble transform Kalman filter (ETKF), the expanded ensemble size associated with vertical covariance localization would also enable the simultaneous update of entire vertical columns of model variables from hyperspectral and multispectral satellite sounders. However, if the original formulation of the ETKF were applied to an expanded ensemble, it would produce an analysis ensemble that was the same size as the expanded forecast ensemble. This article describes a variation on the ETKF called the gain ETKF (GETKF) that takes advantage of covariances from the expanded ensemble, while producing an analysis ensemble that has the required size of the unexpanded forecast ensemble. The approach also yields an inflation factor that depends on the localization length scale that causes the GETKF to perform differently to an ensemble square root filter (EnSRF) using the same expanded ensemble. Experimentation described herein shows that the GETKF outperforms a range of alternative ETKF-based solutions to the aforementioned problems. In cycling data assimilation experiments with a newly developed storm-track version of the Lorenz-96 model, the GETKF analysis root-mean-square error (RMSE) matches the EnSRF RMSE at shorter than optimal localization length scales but is superior in that it yields smaller RMSEs for longer localization length scales.


2019 ◽  
Vol 12 (7) ◽  
pp. 2899-2914
Author(s):  
Yun Liu ◽  
Eugenia Kalnay ◽  
Ning Zeng ◽  
Ghassem Asrar ◽  
Zhaohui Chen ◽  
...  

Abstract. We developed a carbon data assimilation system to estimate surface carbon fluxes using the local ensemble transform Kalman filter (LETKF) and atmospheric transport model GEOS-Chem driven by the MERRA-1 reanalysis of the meteorological field based on the Goddard Earth Observing System model, version 5 (GEOS-5). This assimilation system is inspired by the method of Kang et al. (2011, 2012), who estimated the surface carbon fluxes in an observing system simulation experiment (OSSE) as evolving parameters in the assimilation of the atmospheric CO2, using a short assimilation window of 6 h. They included the assimilation of the standard meteorological variables, so that the ensemble provided a measure of the uncertainty in the CO2 transport. After introducing new techniques such as “variable localization”, and increased observation weights near the surface, they obtained accurate surface carbon fluxes at grid-point resolution. We developed a new version of the local ensemble transform Kalman filter related to the “running-in-place” (RIP) method used to accelerate the spin-up of ensemble Kalman filter (EnKF) data assimilation (Kalnay and Yang, 2010; Wang et al., 2013; Yang et al., 2012). Like RIP, the new assimilation system uses the “no cost smoothing” algorithm for the LETKF (Kalnay et al., 2007b), which allows shifting the Kalman filter solution forward or backward within an assimilation window at no cost. In the new scheme a long “observation window” (e.g., 7 d or longer) is used to create a LETKF ensemble at 7 d. Then, the RIP smoother is used to obtain an accurate final analysis at 1 d. This new approach has the advantage of being based on a short assimilation window, which makes it more accurate, and of having been exposed to the future 7 d observations, which improves the analysis and accelerates the spin-up. The assimilation and observation windows are then shifted forward by 1 d, and the process is repeated. This reduces significantly the analysis error, suggesting that the newly developed assimilation method can be used with other Earth system models, especially in order to make greater use of observations in conjunction with models.


2017 ◽  
Author(s):  
Yun Liu ◽  
Eugenia Kalnay ◽  
Ning Zeng ◽  
Ghassem Asrar ◽  
Zhaohui Chen ◽  
...  

Abstract. We developed a Carbon data assimilation system to estimate the surface carbon fluxes using the Local Ensemble Transform Kalman Filter and atmospheric transfer model of GEOS-Chem driven by the MERRA-1 reanalysis of the meteorological fields based on the Goddard Earth Observing System Model, Version 5 (GEOS-5). This assimilation system is inspired by the method of Kang et al. [2011, 2012], who estimated the surface carbon fluxes in an Observing System Simulation Experiment (OSSE) mode, as evolving parameters in the assimilation of the atmospheric CO2, using a short assimilation window of 6 hours. They included the assimilation of the standard meteorological variables, so that the ensemble provided a measure of the uncertainty in the CO2 transport. After introducing new techniques such as variable localization, and increased observation weights near the surface, they obtained accurate carbon fluxes at grid point resolution. We developed a new version of the LETKF related to the Running-in-Place (RIP) method used to accelerate the spin-up of EnKF data assimilation [Kalnay and Yang, 2010; Wang et al., 2013, Yang et al., 2014]. Like RIP, the new assimilation system uses the no-cost smoothing algorithm for the LETKF [Kalnay et al., 2007b], which allows shifting at no cost the Kalman Filter solution forward or backward within an assimilation window. In the new scheme a long observation window (e.g., 7-days or longer) is used to create an LETKF ensemble at 7-days. Then, the RIP smoother is used to obtain an accurate final analysis at 1-day. This analysis has the advantage of being based on a short assimilation window, which makes it more accurate, and of having been exposed to the future 7-days observations, which accelerates the spin up. The assimilation and observation windows are then shifted forward by one day, and the process is repeated. This reduces significantly the analysis error, suggesting that this method could be used in other data assimilation problems.


Sign in / Sign up

Export Citation Format

Share Document