scholarly journals Drone-Based Autonomous Motion Planning System for Outdoor Environments under Object Detection Uncertainty

2021 ◽  
Vol 13 (21) ◽  
pp. 4481
Author(s):  
Juan Sandino ◽  
Frederic Maire ◽  
Peter Caccetta ◽  
Conrad Sanderson ◽  
Felipe Gonzalez

Recent advances in autonomy of unmanned aerial vehicles (UAVs) have increased their use in remote sensing applications, such as precision agriculture, biosecurity, disaster monitoring, and surveillance. However, onboard UAV cognition capabilities for understanding and interacting in environments with imprecise or partial observations, for objects of interest within complex scenes, are limited, and have not yet been fully investigated. This limitation of onboard decision-making under uncertainty has delegated the motion planning strategy in complex environments to human pilots, which rely on communication subsystems and real-time telemetry from ground control stations. This paper presents a UAV-based autonomous motion planning and object finding system under uncertainty and partial observability in outdoor environments. The proposed system architecture follows a modular design, which allocates most of the computationally intensive tasks to a companion computer onboard the UAV to achieve high-fidelity results in simulated environments. We demonstrate the system with a search and rescue (SAR) case study, where a lost person (victim) in bushland needs to be found using a sub-2 kg quadrotor UAV. The navigation problem is mathematically formulated as a partially observable Markov decision process (POMDP). A motion strategy (or policy) is obtained once a POMDP is solved mid-flight and in real time using augmented belief trees (ABT) and the TAPIR toolkit. The system’s performance was assessed using three flight modes: (1) mission mode, which follows a survey plan and used here as the baseline motion planner; (2) offboard mode, which runs the POMDP-based planner across the flying area; and (3) hybrid mode, which combines mission and offboard modes for improved coverage in outdoor scenarios. Results suggest the increased cognitive power added by the proposed motion planner and flight modes allow UAVs to collect more accurate victim coordinates compared to the baseline planner. Adding the proposed system to UAVs results in improved robustness against potential false positive readings of detected objects caused by data noise, inaccurate detections, and elevated complexity to navigate in time-critical applications, such as SAR.

2017 ◽  
Vol 31 (22) ◽  
pp. 1159-1176
Author(s):  
Mahmoud Abdelgawad ◽  
Sterling McLeod ◽  
Anneliese Andrews ◽  
Jing Xiao

Author(s):  
R. A. Oliveira ◽  
E. Khoramshahi ◽  
J. Suomalainen ◽  
T. Hakala ◽  
N. Viljanen ◽  
...  

The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.


2016 ◽  
Vol 67 (1) ◽  
pp. 45 ◽  
Author(s):  
E. David Boon Moses ◽  
G. Anitha

<p>Advancement in the field of autonomous motion planning has enabled the realisation of fully autonomous unmanned vehicles. Sampling based motion planning algorithms have shown promising prospects in generating fast, effective and practical solutions to different motion planning problems in unmanned vehicles for both civilian and military applications. But the goal bias introduced by heuristic probability shaping to generate faster solution may result in local collisions. A simple, real-time method is proposed for goal direction by preferential selection of a state from a sampled pair of random state, based on the distance to goal. This limits the graph motions resulting in smaller data structure, making the algorithm optimised for time and solution length. This would enable unmanned vehicles to take shorter paths and avoid collisions in obstacle rich environment. The approach is analysed on a sampling based algorithm, rapidly-exploring random tree (RRT) which computes motion plans under constrain of time. This paper proposes an algorithm called ’goal directed RRT (GRRT)’ building on the basic RRT algorithm, providing an alternative to probabilistic goal biasing, thereby avoiding local collision. The approach is evaluated by benchmarking it with RRT algorithm for kinematic car, dynamic car and a quadrotor and the results show improvements in length of the motion plans and the time of computing.</p>


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Munkhjargal Gochoo ◽  
Sheikh Badar Ud Din Tahir ◽  
Ahmad Jalal ◽  
Kibum Kim

2021 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Khawaja Fahad Iqbal ◽  
Akira Kanazawa ◽  
Silvia Romana Ottaviani ◽  
Jun Kinugawa ◽  
Kazuhiro Kosuge

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2534
Author(s):  
Oualid Doukhi ◽  
Deok-Jin Lee

Autonomous navigation and collision avoidance missions represent a significant challenge for robotics systems as they generally operate in dynamic environments that require a high level of autonomy and flexible decision-making capabilities. This challenge becomes more applicable in micro aerial vehicles (MAVs) due to their limited size and computational power. This paper presents a novel approach for enabling a micro aerial vehicle system equipped with a laser range finder to autonomously navigate among obstacles and achieve a user-specified goal location in a GPS-denied environment, without the need for mapping or path planning. The proposed system uses an actor–critic-based reinforcement learning technique to train the aerial robot in a Gazebo simulator to perform a point-goal navigation task by directly mapping the noisy MAV’s state and laser scan measurements to continuous motion control. The obtained policy can perform collision-free flight in the real world while being trained entirely on a 3D simulator. Intensive simulations and real-time experiments were conducted and compared with a nonlinear model predictive control technique to show the generalization capabilities to new unseen environments, and robustness against localization noise. The obtained results demonstrate our system’s effectiveness in flying safely and reaching the desired points by planning smooth forward linear velocity and heading rates.


Sign in / Sign up

Export Citation Format

Share Document