scholarly journals Temperate Grassland Afforestation Dynamics in the Aguapey Valuable Grassland Area between 1999 and 2020: Identifying the Need for Protection

2021 ◽  
Vol 14 (1) ◽  
pp. 74
Author(s):  
Melisa Apellaniz ◽  
Niall G. Burnside ◽  
Matthew Brolly

Temperate grasslands are considered the most endangered terrestrial ecosystem worldwide; the existent areas play a key role in biodiversity conservation. The Aguapey Valuable Grassland Area (VGA), one of the most well-preserved temperate grassland areas within Argentina, is currently threatened by the anthropogenic expansion of exotic tree plantations. Little is known about the impacts of afforestation over temperate grassland landscape structures; therefore, the aim of this study is to characterize Aguapey VGA landscape structural changes between 1999 and 2020 based on remotely sensed data. This involves the generation of land cover maps for four annual periods based on unsupervised classification of Landsat 5 TM and 8 OLI images, the estimation of landscape metrics, and the transition analysis between land cover types and annual periods. The area covered by temperate grassland is shown to have decreased by almost 22% over the 20 year-period studied, due to the expansion of tree plantation cover. The afforestation process took place mainly between 1999 and 2007 in the northern region of the Aguapey VGA, which led first to grassland perforation and subsequently to grassland attrition; however, Aguapey’s cultural tradition of cattle ranching could have partially inhibited the expansion of exotic trees over the final years of the study. The evidence of grassland loss and fragmentation within the Aguapey VGA should be considered as an early warning to promote the development of sustainable land use policies, mainly focused towards the Aguapey VGA’s southern region where temperate grassland remains the predominant land cover type.

2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


2020 ◽  
Vol 12 (9) ◽  
pp. 1418
Author(s):  
Runmin Dong ◽  
Cong Li ◽  
Haohuan Fu ◽  
Jie Wang ◽  
Weijia Li ◽  
...  

Substantial progress has been made in the field of large-area land cover mapping as the spatial resolution of remotely sensed data increases. However, a significant amount of human power is still required to label images for training and testing purposes, especially in high-resolution (e.g., 3-m) land cover mapping. In this research, we propose a solution that can produce 3-m resolution land cover maps on a national scale without human efforts being involved. First, using the public 10-m resolution land cover maps as an imperfect training dataset, we propose a deep learning based approach that can effectively transfer the existing knowledge. Then, we improve the efficiency of our method through a network pruning process for national-scale land cover mapping. Our proposed method can take the state-of-the-art 10-m resolution land cover maps (with an accuracy of 81.24% for China) as the training data, enable a transferred learning process that can produce 3-m resolution land cover maps, and further improve the overall accuracy (OA) to 86.34% for China. We present detailed results obtained over three mega cities in China, to demonstrate the effectiveness of our proposed approach for 3-m resolution large-area land cover mapping.


2016 ◽  
Vol 3 (2) ◽  
pp. 33-47
Author(s):  
Gazi Mosharof Hossain ◽  
ABM Enayet Hossain

Effect of exotic tree plantation on floristic composition and phytodiversity status of Rema-Kalenga wildlife sanctuary of Bangladesh was studied. A total of 309 vascular plant species under 245 genera belonging to 83 families were found to constitute the vascular flora of the studied area. The maximum number of species (298) with the highest Shannon-Weiner diversity index value (3.882±0.090) was recorded from natural forest, which was followed by 194 and 165 plant species with 3.441±0.205 and 3.398±0.103 diversity index values recorded from Tectona and Acacia plantation sites respectively. The minimum number of plant species (142) with the lowest diversity index value (2.999±0.152) was recorded from Eucalyptus plantation site. The collected data on the selected forest sites of Rema-Kalenga wildlife sanctuary showed the trends of gradual decrease in floristic composition and phytodivesity status of three plantation sites (Tectona to Acacia to Eucalyptus) in respect to natural forest, which indicated that exotic tree plantations might have negative impact on floristic composition and phytodiversity of this semi-tropical forest area and the fast-growing exotic tree plantation of Acacia and Eucalyptus should be avoided for sustainable development of Rema-Kalenga wildlife sanctuary.Jahangirnagar University J. Biol. Sci. 3(2): 33-47, 2014 (December)


2015 ◽  
Vol 12 (6) ◽  
pp. 5219-5250 ◽  
Author(s):  
A. Molina ◽  
V. Vanacker ◽  
E. Brisson ◽  
D. Mora ◽  
V. Balthazar

Abstract. Andean headwater catchments play a pivotal role to supply fresh water for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes. In this paper, we assess multi-decadal change in freshwater provision based on long time series (1974–2008) of hydrometeorological data and land cover reconstructions for a 282 km2 catchment located in the tropical Andes. Three main land cover change trajectories can be distinguished: (1) rapid decline of native vegetation in montane forest and páramo ecosystems in ~1/5 or 20% of the catchment area, (2) expansion of agricultural land by 14% of the catchment area, (3) afforestation of 12% of native páramo grasslands with exotic tree species in recent years. Given the strong temporal variability of precipitation and streamflow data related to El Niño–Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow that exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term climate change but very likely result from direct anthropogenic disturbances after land cover change. Partial water budgets for montane cloud forest and páramo ecosystems suggest that the strongest changes in evaporative water losses are observed in páramo ecosystems, where progressive colonization and afforestation of high alpine grasslands leads to a strong increase in transpiration losses.


2014 ◽  
pp. 269-283 ◽  
Author(s):  
Mohamed S. Dafalla ◽  
Elfatih M. Abdel-Rahman ◽  
Khalid H. A. Siddig ◽  
Ibrahim S. Ibrahim ◽  
Elmar Csaplovics

Author(s):  
Ned Horning ◽  
Julie A. Robinson ◽  
Eleanor J. Sterling ◽  
Woody Turner ◽  
Sacha Spector

In terrestrial biomes, ecologists and conservation biologists commonly need to understand vegetation characteristics such as structure, primary productivity, and spatial distribution and extent. Fortunately, there are a number of airborne and satellite sensors capable of providing data from which you can derive this information. We will begin this chapter with a discussion on mapping land cover and land use. This is followed by text on monitoring changes in land cover and concludes with a section on vegetation characteristics and how we can measure these using remotely sensed data. We provide a detailed example to illustrate the process of creating a land cover map from remotely sensed data to make management decisions for a protected area. This section provides an overview of land cover classification using remotely sensed data. We will describe different options for conducting land cover classification, including types of imagery, methods and algorithms, and classification schemes. Land cover mapping is not as difficult as it may appear, but you will need to make several decisions, choices, and compromises regarding image selection and analysis methods. Although it is beyond the scope of this chapter to provide details for all situations, after reading it you will be able to better assess your own needs and requirements. You will also learn the steps to carry out a land cover classification project while gaining an appreciation for the image classification process. That said, if you lack experience with land cover mapping, it always wise to seek appropriate training and, if possible, collaborate with someone who has land cover mapping experience (Section 2.3). Although the terms “land cover” and “land use” are sometimes used interchangeably they are different in important ways. Simply put, land cover is what covers the surface of the Earth and land use describes how people use the land (or water). Examples of land cover classes are: water, snow, grassland, deciduous forest, or bare soil.


Sign in / Sign up

Export Citation Format

Share Document