scholarly journals Positive Unlabelled Learning for Satellite Images’Time Series Analysis: An Application to Cereal and Forest Mapping

2021 ◽  
Vol 14 (1) ◽  
pp. 140
Author(s):  
Johann Desloires ◽  
Dino Ienco ◽  
Antoine Botrel ◽  
Nicolas Ranc

Applications in which researchers aim to extract a single land type from remotely sensed data are quite common in practical scenarios: extract the urban footprint to make connections with socio-economic factors; map the forest extent to subsequently retrieve biophysical variables and detect a particular crop type to successively calibrate and deploy yield prediction models. In this scenario, the (positive) targeted class is well defined, while the negative class is difficult to describe. This one-class classification setting is also referred to as positive unlabelled learning (PUL) in the general field of machine learning. To deal with this challenging setting, when satellite image time series data are available, we propose a new framework named positive and unlabelled learning of satellite image time series (PUL-SITS). PUL-SITS involves two different stages: In the first one, a recurrent neural network autoencoder is trained to reconstruct only positive samples with the aim to higight reliable negative ones. In the second stage, both labelled and unlabelled samples are exploited in a semi-supervised manner to build the final binary classification model. To assess the quality of our approach, experiments were carried out on a real-world benchmark, namely Haute-Garonne, located in the southwest area of France. From this study site, we considered two different scenarios: a first one in which the process has the objective to map Cereals/Oilseeds cover versus the rest of the land cover classes and a second one in which the class of interest is the Forest land cover. The evaluation was carried out by comparing the proposed approach with recent competitors to deal with the considered positive and unlabelled learning scenarios.

Author(s):  
Z.-G. Zhou ◽  
P. Tang ◽  
M. Zhou

Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level) of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1) Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST). (2) Forecasting and detecting disturbances in new time series data. (3) Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI) and Confidence Levels (CL). The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.


Author(s):  
Z.-G. Zhou ◽  
P. Tang ◽  
M. Zhou

Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level) of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1) Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST). (2) Forecasting and detecting disturbances in new time series data. (3) Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI) and Confidence Levels (CL). The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3553
Author(s):  
Jeremy Watts ◽  
Anahita Khojandi ◽  
Rama Vasudevan ◽  
Fatta B. Nahab ◽  
Ritesh A. Ramdhani

Parkinson’s disease medication treatment planning is generally based on subjective data obtained through clinical, physician-patient interactions. The Personal KinetiGraph™ (PKG) and similar wearable sensors have shown promise in enabling objective, continuous remote health monitoring for Parkinson’s patients. In this proof-of-concept study, we propose to use objective sensor data from the PKG and apply machine learning to cluster patients based on levodopa regimens and response. The resulting clusters are then used to enhance treatment planning by providing improved initial treatment estimates to supplement a physician’s initial assessment. We apply k-means clustering to a dataset of within-subject Parkinson’s medication changes—clinically assessed by the MDS-Unified Parkinson’s Disease Rating Scale-III (MDS-UPDRS-III) and the PKG sensor for movement staging. A random forest classification model was then used to predict patients’ cluster allocation based on their respective demographic information, MDS-UPDRS-III scores, and PKG time-series data. Clinically relevant clusters were partitioned by levodopa dose, medication administration frequency, and total levodopa equivalent daily dose—with the PKG providing similar symptomatic assessments to physician MDS-UPDRS-III scores. A random forest classifier trained on demographic information, MDS-UPDRS-III scores, and PKG time-series data was able to accurately classify subjects of the two most demographically similar clusters with an accuracy of 86.9%, an F1 score of 90.7%, and an AUC of 0.871. A model that relied solely on demographic information and PKG time-series data provided the next best performance with an accuracy of 83.8%, an F1 score of 88.5%, and an AUC of 0.831, hence further enabling fully remote assessments. These computational methods demonstrate the feasibility of using sensor-based data to cluster patients based on their medication responses with further potential to assist with medication recommendations.


2017 ◽  
Vol 10 (2) ◽  
pp. 32 ◽  
Author(s):  
Dengqiu Li ◽  
Dengsheng Lu ◽  
Ming Wu ◽  
Xuexin Shao ◽  
Jinhong Wei

Agromet ◽  
2007 ◽  
Vol 21 (2) ◽  
pp. 46 ◽  
Author(s):  
W. Estiningtyas ◽  
F. Ramadhani ◽  
E. Aldrian

<p>Significant decrease in rainfall caused extreme climate has significant impact on agriculture sector, especialy food crops production. It is one of reason and push developing of rainfall prediction models as anticipate from extreme climate events. Rainfall prediction models develop base on time series data, and then it has been included anomaly aspect, like rainfall prediction model with Kalman filtering method. One of global parameter that has been used as climate anomaly indicator is sea surface temperature. Some of research indicate, there are relationship between sea surface temperature and rainfall. Relationship between Indonesian rainfall and global sea surface temperature has been known, but its relationship with Indonesian’s sea surface temperature not know yet, especialy for rainfall in smaller area like district. So, therefore the research about relationship between rainfall in distric area and Indonesian’s sea surface temperature and it application for rainfall prediction is needed. Based on Indonesian’s sea surface temperature time series data Januari 1982 until Mei 2006 show there are zona of Indonesian’s sea surface temperature (with temperature more than 27,6 0C) dominan in Januari-Mei and moved with specific pattern. Highest value of spasial correlation beetwen Cilacap’s rainfall and Indonesian’s sea surface temperature is 0,30 until 0,50 with different zona of Indonesian’s sea surface temperature. Highest positive correlation happened in March and July. Negative correlation is -0,30 until -0,70 with highest negative correlation in May and June. Model validation resulted correlation coeffcient 85,73%, fits model 20,74%, r2 73,49%, RMSE 20,5% and standart deviation 37,96. Rainfall prediction Januari-Desember 2007 period indicated rainfall pattern is near same with average rainfall pattern, rainfall less than 100/month. The result of this research indicate Indonesian’s sea surface temperature can be used as indicator rainfall condition in distric area, that means rainfall in district area can be predicted based on Indonesian’s sea surface temperature in zona with highest correlation in every month.</p><p>------------------------------------------------------------------</p><p>Penurunan curah hujan yang cukup signifikan akibat iklim ekstrim telah membawa dampak yang cukup signifikan pula pada sektor pertanian, terutama produksi tanaman pangan. Hal ini menjadi salah satu alasan yang mendorong semakin berkembangnya model-model prakiraan hujan sebagai upaya antipasi terhadap kejadian iklim ekstrim. Model prakiraan hujan yang pada awalnya hanya berbasis pada data time series, kini telah berkembang dengan memperhitungkan aspek anomali iklim, seperti model prakiraan hujan dengan metode filter Kalman. Salah satu indikator global yang dapat digunakan sebagai indikator anomali iklim adalah suhu permukaan laut. Dari berbagai hasil penelitian diketahui bahwa suhu permukaan laut ini memiliki keterkaitan dengan kejadian curah hujan. Hubungan curah hujan Indonesia dengan suhu permukaan laut global sudah banyak diketahui, tetapi keterkaitannya dengan suhu permukaan laut wilayah Indonesia belum banyak mendapat perhatian, terutama untuk curah hujan pada cakupan yang lebih sempit seperti kabupaten. Oleh karena itu perlu dilakukan penelitian yang mengkaji hubungan kedua parameter tersebut serta mengaplikasikannya untuk prakiraan curah hujan pada wilayah Kabupaten. Hasil penelitian berdasarkan data suhu permukaan laut wilayah Indonesia rata-rata Januari 1982 hingga Mei 2006 menunjukkan zona dengan suhu lebih dari 27,6 0C yang dominan pada bulan Januari-Mei dan bergerak dengan pola yang cukup jelas. Korelasi spasial antara curah hujan kabupaten Cilacap dengan SPL wilayah Indonesia rata-rata bulan Januari-Desember menunjukkan korelasi positip tertinggi antara 0,30 hingga 0,50 dengan zona SPL yang beragam. Korelasi tertinggi terjadi pada bulan Maret dan Juli. Sedangkan korelasi negatip berkisar antara -0,30 hingga -0,70 dengan korelasi negatip tertinggi pada bulan Mei dan Juni. Validasi model prakiraan hujan menghasilkan nilai koefisien korelasi 85,73%, fits model 20,74%, r2 sebesar 73,49%, RMSE 20,5% dan standar deviasi 37,96. Hasil prakiraan hujan bulanan periode Januari-Desember 2007 mengindikasikan pola curah hujan yang tidak jauh berbeda dengan rata-rata selama 19 tahun (1988-2006) dengan jeluk hujan kurang dari 100 mm/bulan. Hasil penelitian mengindikasikan bahwa SPL wilayah Indonesia dapat digunakan sebagai indikator untuk menunjukkan kondisi curah hujan di suatu wilayah (kabupaten), artinya curah hujan dapat diprediksi berdasarkan perubahan SPL pada zona-zona dengan korelasi yang tertinggi pada setiap bulannya.</p>


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2812 ◽  
Author(s):  
Jing Yang ◽  
Yizhong Sun ◽  
Bowen Shang ◽  
Lei Wang ◽  
Jie Zhu

With the availability of large geospatial datasets, the study of collective human mobility spatiotemporal patterns provides a new way to explore urban spatial environments from the perspective of residents. In this paper, we constructed a classification model for mobility patterns that is suitable for taxi OD (Origin-Destination) point data, and it is comprised of three parts. First, a new aggregate unit, which uses a road intersection as the constraint condition, is designed for the analysis of the taxi OD point data. Second, the time series similarity measurement is improved by adding a normalization procedure and time windows to address the particular characteristics of the taxi time series data. Finally, the DBSCAN algorithm is used to classify the time series into different mobility patterns based on a proximity index that is calculated using the improved similarity measurement. In addition, we used the random forest algorithm to establish a correlation model between the mobility patterns and the regional functional characteristics. Based on the taxi OD point data from Nanjing, we delimited seven mobility patterns and illustrated that the regional functions have obvious driving effects on these mobility patterns. These findings are applicable to urban planning, traffic management and planning, and land use analyses in the future.


2020 ◽  
Vol 12 (18) ◽  
pp. 3091
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Jiangning Yang

Percentile features derived from Landsat time-series data are widely adopted in land-cover classification. However, the temporal distribution of Landsat valid observations is highly uneven across different pixels due to the gaps resulting from clouds, cloud shadows, snow, and the scan line corrector (SLC)-off problem. In addition, when applying percentile features, land-cover change in time-series data is usually not considered. In this paper, an improved percentile called the time-series model (TSM)-adjusted percentile is proposed for land-cover classification based on Landsat data. The Landsat data were first modeled using three different time-series models, and the land-cover changes were continuously monitored using the continuous change detection (CCD) algorithm. The TSM-adjusted percentiles for stable pixels were then derived from the synthetic time-series data without gaps. Finally, the TSM-adjusted percentiles were used for generating supervised random forest classifications. The proposed methods were implemented on Landsat time-series data of three study areas. The classification results were compared with those obtained using the original percentiles derived from the original time-series data with gaps. The results show that the land-cover classifications obtained using the proposed TSM-adjusted percentiles have significantly higher overall accuracies than those obtained using the original percentiles. The proposed method was more effective for forest types with obvious phenological characteristics and with fewer valid observations. In addition, it was also robust to the training data sampling strategy. Overall, the methods proposed in this work can provide accurate characterization of land cover and improve the overall classification accuracy based on such metrics. The findings are promising for percentile-based land cover classification using Landsat time series data, especially in the areas with frequent cloud coverage.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2020 ◽  
Vol 12 (17) ◽  
pp. 2735 ◽  
Author(s):  
Carlos M. Souza ◽  
Julia Z. Shimbo ◽  
Marcos R. Rosa ◽  
Leandro L. Parente ◽  
Ane A. Alencar ◽  
...  

Brazil has a monitoring system to track annual forest conversion in the Amazon and most recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land cover (LULC) information in all Brazilian biomes in the country. Existing countrywide efforts to map land use and land cover lack regularly updates and high spatial resolution time-series data to better understand historical land use and land cover dynamics, and the subsequent impacts in the country biomes. In this study, we described a novel approach and the results achieved by a multi-disciplinary network called MapBiomas to reconstruct annual land use and land cover information between 1985 and 2017 for Brazil, based on random forest applied to Landsat archive using Google Earth Engine. We mapped five major classes: forest, non-forest natural formation, farming, non-vegetated areas, and water. These classes were broken into two sub-classification levels leading to the most comprehensive and detailed mapping for the country at a 30 m pixel resolution. The average overall accuracy of the land use and land cover time-series, based on a stratified random sample of 75,000 pixel locations, was 89% ranging from 73 to 95% in the biomes. The 33 years of LULC change data series revealed that Brazil lost 71 Mha of natural vegetation, mostly to cattle ranching and agriculture activities. Pasture expanded by 46% from 1985 to 2017, and agriculture by 172%, mostly replacing old pasture fields. We also identified that 86 Mha of the converted native vegetation was undergoing some level of regrowth. Several applications of the MapBiomas dataset are underway, suggesting that reconstructing historical land use and land cover change maps is useful for advancing the science and to guide social, economic and environmental policy decision-making processes in Brazil.


Sign in / Sign up

Export Citation Format

Share Document