scholarly journals An Efficient Ground Moving Target Imaging Method for Airborne Circular Stripmap SAR

2022 ◽  
Vol 14 (1) ◽  
pp. 210
Author(s):  
Yongkang Li ◽  
Tianyu Huo ◽  
Chenxi Yang ◽  
Tong Wang ◽  
Juan Wang ◽  
...  

This paper studies the imaging of a ground moving target with airborne circular stripmap synthetic aperture radar (CSSAR). First, the range equation of a target moving with accelerations is developed. Then, a new range model of high accuracy is proposed, since the commonly used second-order Taylor-approximated range model is inaccurate when the azimuth resolution is relatively high or the target moves with accelerations. The proposed range model also makes it easy to derive an accurate analytical expression for the target’s 2-D spectrum. Third, based on the proposed range model, the target’s 2-D spectrum is derived and an efficient imaging method is proposed. The proposed imaging method implements focusing via a phase multiplication in the 2-D frequency domain and utilizes the genetic algorithm to accomplish an efficient search of the parameters of the proposed range model. Finally, numerical experiments are conducted to validate the proposed range model and the proposed imaging method.

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Ahmed Shaharyar Khwaja ◽  
Muhammad Naeem ◽  
Alagan Anpalagan

We present compressed sensing (CS) synthetic aperture radar (SAR) moving target imaging in the presence of dictionary mismatch. Unlike existing work on CS SAR moving target imaging, we analyze the sensitivity of the imaging process to the mismatch and present an iterative scheme to cope with dictionary mismatch. We analyze and investigate the effects of mismatch in range and azimuth positions, as well as range velocity. The analysis reveals that the reconstruction error increases with the mismatch and range velocity mismatch is the major cause of error. Instead of using traditional Laplacian prior (LP), we use Gaussian-Bernoulli prior (GBP) for CS SAR imaging mismatch. The results show that the performance of GBP is much better than LP. We also provide the Cramer-Rao Bounds (CRB) that demonstrate theoretically the lowering of mean square error between actual and reconstructed result by using the GBP. We show that a combination of an upsampled dictionary and the GBP for reconstruction can deal with position mismatch effectively. We further present an iterative scheme to deal with the range velocity mismatch. Numerical and simulation examples demonstrate the accuracy of the analysis as well as the effectiveness of the proposed upsampling and iterative scheme.


Sensors ◽  
2017 ◽  
Vol 17 (12) ◽  
pp. 216 ◽  
Author(s):  
Zhongyu Li ◽  
Junjie Wu ◽  
Yulin Huang ◽  
Haiguang Yang ◽  
Jianyu Yang

Sign in / Sign up

Export Citation Format

Share Document