scholarly journals The Impacts of Rapid Urbanization on the Thermal Environment: A Remote Sensing Study of Guangzhou, South China

2012 ◽  
Vol 4 (7) ◽  
pp. 2033-2056 ◽  
Author(s):  
Yongzhu Xiong ◽  
Shaopeng Huang ◽  
Feng Chen ◽  
Hong Ye ◽  
Cuiping Wang ◽  
...  
2019 ◽  
Vol 11 (10) ◽  
pp. 2890 ◽  
Author(s):  
Hongyu Du ◽  
Jinquan Ai ◽  
Yongli Cai ◽  
Hong Jiang ◽  
Pudong Liu

Rapid urbanization leads to changes in surface coverage and landscape patterns. This results in urban heat island (UHI) effects and a series of negative ecological consequences. Considering this concern and taking Shanghai as an example, this paper concentrates on the effects of surface coverage and landscape patterns on urban land surface temperature (LST). The research is based on quantitative retrieval of remote sensing data with consideration of methods in multiple disciplines, including landscape ecology, geographic information systems, and statistical analysis. It concludes that, over time, the thermal environment of Shanghai is becoming critical. The average LST ranking of different surface coverage is as follows: Construction land (CL) > bare land (BL) > green land (GL) > agricultural land (AL) > water body (WB). LST varies significantly with the type of surface coverage. CL contributes the most to the UHI, while WB and GL have obvious mitigation effects on the UHI. The large area, low degree of landscape fragmentation, and complex outlines lead to low LST rankings for GL, WB, and AL and a high LST ranking for CL. The conclusions indicate that CL should be broken down by GL and WB into discrete pieces to effectively mitigate UHI effects. The research reveals UHI features and changes in Shanghai over the years and provides practical advice that can be used by urban planning authorities to mitigate UHI.


2013 ◽  
Vol 726-731 ◽  
pp. 4682-4685 ◽  
Author(s):  
Jie Ying Xiao ◽  
Na Ji ◽  
Xing Li

There are a great number of index methods used to extract impervious surface from satellite images. However, these indices are not robust enough to detect steel framed roof due to the diversity of impervious materials. The extraction of steel framed roof information by remote sensing technology is becoming increasingly important because of its environmental and socio-economic significance. A new index, Normalized Difference Steel framed roof Index (NDSI) is proposed to extract steel framed roof surface information from TM images. The NDSI was created based on its spectral characteristics of TM image and the steel framed roof information can be extracted fast by NDSI threshold method. Additionally, Shijiazhuang city, which has experienced rapid urbanization, was chosen as the study area. And the classification results show that the new index NDSI can effectively extract steel framed roof information with higher accuracy.


2020 ◽  
Author(s):  
Xiaoyu Wang ◽  
Peng Liu ◽  
Gongwen Xu

Abstract The thermal environment and microclimate of heritage sites has been severely impacted by rapid urbanization. This study collected various meteorological measurement data as a reference for computational fluid dynamics (CFD) simulation settings. Then CFD was applied to simulate the impact of lawns on the thermal environment and microclimate of Fuling Mausoleum. We found that lawns and soil can cool the air through evaporation, and thus have a specific cooling effect on the bricked ground. After lawns were planted, the bricked ground temperature decreased by 1.56–17.54°C than that before lawns were planted at 14:00, a decrease of 2.68%–24.20%. Under normal circumstances, when the wind speed or relative humidity increased, the ground temperature dropped. Greenbelt vegetation can adjust the microclimate and human thermal comfort indicators. The consistency of the difference between the actual measurement and the CFD simulation results shows that CFD simulation can thus accurately reflect the internal temperature field distribution if the selection of simulation parameters is reasonable. Theoretical calculation and analysis, experimental measurement research, and modern computer simulation analysis methods applied together constitute a complete system for studying modern physical environmental problems and can provide reliable and economic results.


Author(s):  
Abdulla-Al Kafy ◽  
Muhaiminul Islam ◽  
Soumik Sikdar ◽  
Tahera Jahan Ashrafi ◽  
Abdullah Al-Faisal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document