scholarly journals Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

Sensors ◽  
2015 ◽  
Vol 15 (8) ◽  
pp. 18114-18139 ◽  
Author(s):  
Xingming Sun ◽  
Shuangshuang Yan ◽  
Baowei Wang ◽  
Li Xia ◽  
Qi Liu ◽  
...  
Author(s):  
Jianqing Huang ◽  
Debing Liu ◽  
Qi Yuan

Anthurium is known as a famous and precious cut flower in the world, but its growth and ornamental effect is easily affected by environmental conditions such as temperature, humidity and light intensity. An environment parameter monitoring system based on wireless sensor network is proposed to let flower managers understand the status of anthurium growth environment at any time, and take effective measures to improve the environment. The proposed system uses sensor nodes to acquire data of air temperature and humidity, light intensity and soil temperature and humidity, sink node to collect data from sensor nodes through wireless sensor network, and send data to the PC of monitoring center. By using MSP430F149 as the main controller, nRF905 as the communication module, and AM2306, GY-30 and SMTS-II-485X as the air temperature and humidity, light intensity and soil temperature and humidity sensors, the hardware of the wireless sensor network nodes are realized. The node software is developed based on IAR Embedded Workbench and the computer monitoring software by VB6.0. The results show that the proposed system which is accurate and stable can make real-time monitoring of anthurium growth environment in a large scale.  Therefore it can be widely applied in agricultural environmental monitoring.


ACTA IMEKO ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 5 ◽  
Author(s):  
Yi Huang ◽  
Clemens Gühmann

<p class="Abstract">A 4<sup>th</sup>-order Kalman filter (KF) algorithm is developed based on the thermal model of an asynchronous machine. The thermal parameters are identified and KF is implemented in a wireless sensor network (WSN) to estimate the temperatures of the stator windings, the rotor cage, and the stator core of an asynchronous machine. The rotor speed, coolant air temperature, and the effective current and voltage are acquired by a WTIM (wireless transducer interface module) separately and transmitted to a NCAP (network capable application processor) where the KF algorithm is implemented. Losses of the stator windings and the rotor cage are copper losses, and the stator core losses are iron losses. The losses of the stator windings, the rotor cage and the stator core are calculated from the measurements and are processed with the coolant air temperature by KF. As the resistance varies from temperature, the estimated temperature of the stator windings is used for compensating the rising of resistance.  Simulations and experiments on the test bench were performed before the KF algorithm is implemented on a wireless sensor node. The real-time temperature estimator on WSN is independent of control algorithm and can work under any load condition with very high accuracy.</p>


Sign in / Sign up

Export Citation Format

Share Document