scholarly journals Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor

Sensors ◽  
2016 ◽  
Vol 16 (7) ◽  
pp. 1142 ◽  
Author(s):  
Zong Yao ◽  
Ting Liang ◽  
Pinggang Jia ◽  
Yingping Hong ◽  
Lei Qi ◽  
...  
Sensors ◽  
2016 ◽  
Vol 16 (6) ◽  
pp. 913 ◽  
Author(s):  
Zong Yao ◽  
Ting Liang ◽  
Pinggang Jia ◽  
Yingping Hong ◽  
Lei Qi ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 379
Author(s):  
Baohua Tian ◽  
Haiping Shang ◽  
Lihuan Zhao ◽  
Dahai Wang ◽  
Yang Liu ◽  
...  

The hermeticity performance of the cavity structure has an impact on the long-term stability of absolute pressure sensors for high temperature applications. In this paper, a bare silicon carbide (SiC) wafer was bonded to a patterned SiC substrate with shallow grooves based on a room temperature direct bonding process to achieve a sealed cavity structure. Then the hermeticity analysis on the SiC cavity structure was performed. The microstructure observation demonstrates that the SiC wafers are tightly bonded and the cavities remain intact. Moreover, the tensile testing indicates that the tensile strength of bonding interface is ~8.01 MPa. Moreover, the quantitative analysis on the airtightness of cavity structure through leakage detection shows a helium leak rate of ~1.3 × 10−10 Pa⋅m3/s, which satisfies the requirement of the specification in the MIL-STD-883H. The cavity structure can also avoid an undesirable deep etching process and the problem caused by the mismatch of thermal expansion coefficients, which can be potentially further developed into an all-SiC piezoresistive pressure sensor employable for high temperature applications.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5256
Author(s):  
Imran Ali ◽  
Muhammad Asif ◽  
Khuram Shehzad ◽  
Muhammad Riaz Ur Rehman ◽  
Dong Gyu Kim ◽  
...  

Recently, piezoresistive-type (PRT) pressure sensors have been gaining attention in variety of applications due to their simplicity, low cost, miniature size and ruggedness. The electrical behavior of a pressure sensor is highly dependent on the temperature gradient which seriously degrades its reliability and reduces measurement accuracy. In this paper, polynomial-based adaptive digital temperature compensation is presented for automotive piezoresistive pressure sensor applications. The non-linear temperature dependency of a pressure sensor is accurately compensated for by incorporating opposite characteristics of the pressure sensor as a function of temperature. The compensation polynomial is fully implemented in a digital system and a scaling technique is introduced to enhance its accuracy. The resource sharing technique is adopted for minimizing controller area and power consumption. The negative temperature coefficient (NTC) instead of proportional to absolute temperature (PTAT) or complementary to absolute temperature (CTAT) is used as the temperature-sensing element since it offers the best temperature characteristics for grade 0 ambient temperature operating range according to the automotive electronics council (AEC) test qualification ACE-Q100. The shared structure approach uses an existing analog signal conditioning path, composed of a programmable gain amplifier (PGA) and an analog-to-digital converter (ADC). For improving the accuracy over wide range of temperature, a high-resolution sigma-delta ADC is integrated. The measured temperature compensation accuracy is within ±0.068% with full scale when temperature varies from −40 °C to 150 °C according to ACE-Q100. It takes 37 µs to compute the temperature compensation with a clock frequency of 10 MHz. The proposed technique is integrated in an automotive pressure sensor signal conditioning chip using a 180 nm complementary metal–oxide–semiconductor (CMOS) process.


Sign in / Sign up

Export Citation Format

Share Document