scholarly journals Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield

Sensors ◽  
2016 ◽  
Vol 16 (8) ◽  
pp. 1332 ◽  
Author(s):  
Haiyan Yang ◽  
Xuhai Yang ◽  
Baoqi Sun ◽  
Hang Su
2020 ◽  
pp. 1-21
Author(s):  
Qiongqiong Jia ◽  
Li-Ta Hsu ◽  
Bing Xu ◽  
Renbiao Wu

Abstract Array antenna beam forming has high potential to improve the performance of the global navigation satellite system (GNSS) in urban areas. However, the widespread application of array antennas for GNSS multipath mitigation is restricted by many factors, such as the complexity of the system, the computation load and conflicts between required performance, cost budget and limited room for the antenna placement. The scope of this work is triplicate. (1) The pre-correlation beam forming structure is first suggested for multipath mitigation to decrease the system complexity. (2) With the pre-correlation structure, the equivalence of adaptive beam forming to quiescent beam forming is revealed. Therefore, the computational load for beam forming is greatly decreased. (3) A theoretical model is established to link the benefits of beam forming with GNSS performance improvement in terms of pseudorange quality. The model can be used by industry to balance the aforementioned restrictions. Numerical results with different array settings are given, and a 2 × 2 rectangle array with $0.4\lambda $ element spacing is suggested as a cost-effective choice in GNSS positioning applications in urban canyon areas.


2020 ◽  
Vol 17 (5) ◽  
pp. 172988142096869
Author(s):  
Yue Yuan ◽  
Feng Shen ◽  
Dingjie Xu

Multipath interference has been one of the most difficult problems when using global navigation satellite system-based vehicular navigation in urban environments. In this article, we develop a multipath mitigation algorithm exploiting the sparse estimation theory that improves the absolute positioning accuracy in urban environments. The navigation observation model is established by considering the multipath bias as additive positioning errors, and the assumption for the proposed method is that global navigation satellite system signals contaminated due to multipath are the minority among the received signals, which makes the unknown bias vector sparse. We investigated an improved elastic net method to estimate the sparse multipath bias vector, and the global navigation satellite system measurements can be corrected by subtracting the estimated multipath error. The positioning performance of the proposed method is verified by analytical and experimental results.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


2010 ◽  
Vol 63 (2) ◽  
pp. 269-287 ◽  
Author(s):  
S. Abbasian Nik ◽  
M. G. Petovello

These days, Global Navigation Satellite System (GNSS) technology plays a critical role in positioning and navigation applications. Use of GNSS is becoming more of a need to the public. Therefore, much effort is needed to make the civilian part of the system more accurate, reliable and available, especially for the safety-of-life purposes. With the recent revitalization of Russian Global Navigation Satellite System (GLONASS), with a constellation of 20 satellites in August 2009 and the promise of 24 satellites by 2010, it is worthwhile concentrating on the GLONASS system as a method of GPS augmentation to achieve more reliable and accurate navigation solutions.


Sign in / Sign up

Export Citation Format

Share Document