scholarly journals HoPE: Horizontal Plane Extractor for Cluttered 3D Scenes

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3214 ◽  
Author(s):  
Zhipeng Dong ◽  
Yi Gao ◽  
Jinfeng Zhang ◽  
Yunhui Yan ◽  
Xin Wang ◽  
...  

Extracting horizontal planes in heavily cluttered three-dimensional (3D) scenes is an essential procedure for many robotic applications. Aiming at the limitations of general plane segmentation methods on this subject, we present HoPE, a Horizontal Plane Extractor that is able to extract multiple horizontal planes in cluttered scenes with both organized and unorganized 3D point clouds. It transforms the source point cloud in the first stage to the reference coordinate frame using the sensor orientation acquired either by pre-calibration or an inertial measurement unit, thereby leveraging the inner structure of the transformed point cloud to ease the subsequent processes that use two concise thresholds for producing the results. A revised region growing algorithm named Z clustering and a principal component analysis (PCA)-based approach are presented for point clustering and refinement, respectively. Furthermore, we provide a nearest neighbor plane matching (NNPM) strategy to preserve the identities of extracted planes across successive sequences. Qualitative and quantitative evaluations of both real and synthetic scenes demonstrate that our approach outperforms several state-of-the-art methods under challenging circumstances, in terms of robustness to clutter, accuracy, and efficiency. We make our algorithm an off-the-shelf toolbox which is publicly available.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3625 ◽  
Author(s):  
Dawei Li ◽  
Yan Cao ◽  
Xue-song Tang ◽  
Siyuan Yan ◽  
Xin Cai

Leaves account for the largest proportion of all organ areas for most kinds of plants, and are comprise the main part of the photosynthetically active material in a plant. Observation of individual leaves can help to recognize their growth status and measure complex phenotypic traits. Current image-based leaf segmentation methods have problems due to highly restricted species and vulnerability toward canopy occlusion. In this work, we propose an individual leaf segmentation approach for dense plant point clouds using facet over-segmentation and facet region growing. The approach can be divided into three steps: (1) point cloud pre-processing, (2) facet over-segmentation, and (3) facet region growing for individual leaf segmentation. The experimental results show that the proposed method is effective and efficient in segmenting individual leaves from 3D point clouds of greenhouse ornamentals such as Epipremnum aureum, Monstera deliciosa, and Calathea makoyana, and the average precision and recall are both above 90%. The results also reveal the wide applicability of the proposed methodology for point clouds scanned from different kinds of 3D imaging systems, such as stereo vision and Kinect v2. Moreover, our method is potentially applicable in a broad range of applications that aim at segmenting regular surfaces and objects from a point cloud.


2021 ◽  
Vol 11 (13) ◽  
pp. 5941
Author(s):  
Mun-yong Lee ◽  
Sang-ha Lee ◽  
Kye-dong Jung ◽  
Seung-hyun Lee ◽  
Soon-chul Kwon

Computer-based data processing capabilities have evolved to handle a lot of information. As such, the complexity of three-dimensional (3D) models (e.g., animations or real-time voxels) containing large volumes of information has increased exponentially. This rapid increase in complexity has led to problems with recording and transmission. In this study, we propose a method of efficiently managing and compressing animation information stored in the 3D point-clouds sequence. A compressed point-cloud is created by reconfiguring the points based on their voxels. Compared with the original point-cloud, noise caused by errors is removed, and a preprocessing procedure that achieves high performance in a redundant processing algorithm is proposed. The results of experiments and rendering demonstrate an average file-size reduction of 40% using the proposed algorithm. Moreover, 13% of the over-lap data are extracted and removed, and the file size is further reduced.


Author(s):  
E. S. Malinverni ◽  
R. Pierdicca ◽  
M. Paolanti ◽  
M. Martini ◽  
C. Morbidoni ◽  
...  

<p><strong>Abstract.</strong> Cultural Heritage is a testimony of past human activity, and, as such, its objects exhibit great variety in their nature, size and complexity; from small artefacts and museum items to cultural landscapes, from historical building and ancient monuments to city centers and archaeological sites. Cultural Heritage around the globe suffers from wars, natural disasters and human negligence. The importance of digital documentation is well recognized and there is an increasing pressure to document our heritage both nationally and internationally. For this reason, the three-dimensional scanning and modeling of sites and artifacts of cultural heritage have remarkably increased in recent years. The semantic segmentation of point clouds is an essential step of the entire pipeline; in fact, it allows to decompose complex architectures in single elements, which are then enriched with meaningful information within Building Information Modelling software. Notwithstanding, this step is very time consuming and completely entrusted on the manual work of domain experts, far from being automatized. This work describes a method to label and cluster automatically a point cloud based on a supervised Deep Learning approach, using a state-of-the-art Neural Network called PointNet++. Despite other methods are known, we have choose PointNet++ as it reached significant results for classifying and segmenting 3D point clouds. PointNet++ has been tested and improved, by training the network with annotated point clouds coming from a real survey and to evaluate how performance changes according to the input training data. It can result of great interest for the research community dealing with the point cloud semantic segmentation, since it makes public a labelled dataset of CH elements for further tests.</p>


Author(s):  
F. Poux ◽  
C. Mattes ◽  
L. Kobbelt

Abstract. Point cloud data of indoor scenes is primarily composed of planar-dominant elements. Automatic shape segmentation is thus valuable to avoid labour intensive labelling. This paper provides a fully unsupervised region growing segmentation approach for efficient clustering of massive 3D point clouds. Our contribution targets a low-level grouping beneficial to object-based classification. We argue that the use of relevant segments for object-based classification has the potential to perform better in terms of recognition accuracy, computing time and lowers the manual labelling time needed. However, fully unsupervised approaches are rare due to a lack of proper generalisation of user-defined parameters. We propose a self-learning heuristic process to define optimal parameters, and we validate our method on a large and richly annotated dataset (S3DIS) yielding 88.1% average F1-score for object-based classification. It permits to automatically segment indoor point clouds with no prior knowledge at commercially viable performance and is the foundation for efficient indoor 3D modelling in cluttered point clouds.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3681 ◽  
Author(s):  
Le Zhang ◽  
Jian Sun ◽  
Qiang Zheng

The recognition of three-dimensional (3D) lidar (light detection and ranging) point clouds remains a significant issue in point cloud processing. Traditional point cloud recognition employs the 3D point clouds from the whole object. Nevertheless, the lidar data is a collection of two-and-a-half-dimensional (2.5D) point clouds (each 2.5D point cloud comes from a single view) obtained by scanning the object within a certain field angle by lidar. To deal with this problem, we initially propose a novel representation which expresses 3D point clouds using 2.5D point clouds from multiple views and then we generate multi-view 2.5D point cloud data based on the Point Cloud Library (PCL). Subsequently, we design an effective recognition model based on a multi-view convolutional neural network. The model directly acts on the raw 2.5D point clouds from all views and learns to get a global feature descriptor by fusing the features from all views by the view fusion network. It has been proved that our approach can achieve an excellent recognition performance without any requirement for three-dimensional reconstruction and the preprocessing of point clouds. In conclusion, this paper can effectively solve the recognition problem of lidar point clouds and provide vital practical value.


2021 ◽  
Vol 13 (12) ◽  
pp. 2332
Author(s):  
Daniel Lamas ◽  
Mario Soilán ◽  
Javier Grandío ◽  
Belén Riveiro

The growing development of data digitalisation methods has increased their demand and applications in the transportation infrastructure field. Currently, mobile mapping systems (MMSs) are one of the most popular technologies for the acquisition of infrastructure data, with three-dimensional (3D) point clouds as their main product. In this work, a heuristic-based workflow for semantic segmentation of complex railway environments is presented, in which their most relevant elements are classified, namely, rails, masts, wiring, droppers, traffic lights, and signals. This method takes advantage of existing methodologies in the field for point cloud processing and segmentation, taking into account the geometry and spatial context of each classified element in the railway environment. This method is applied to a 90-kilometre-long railway lane and validated against a manual reference on random sections of the case study data. The results are presented and discussed at the object level, differentiating the type of the element. The indicators F1 scores obtained for each element are superior to 85%, being higher than 99% in rails, the most significant element of the infrastructure. These metrics showcase the quality of the algorithm, which proves that this method is efficient for the classification of long and variable railway sections, and for the assisted labelling of point cloud data for future applications based on training supervised learning models.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Seoungjae Cho ◽  
Jonghyun Kim ◽  
Warda Ikram ◽  
Kyungeun Cho ◽  
Young-Sik Jeong ◽  
...  

A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.


Author(s):  
M. Zaboli ◽  
H. Rastiveis ◽  
A. Shams ◽  
B. Hosseiny ◽  
W. A. Sarasua

Abstract. Automated analysis of three-dimensional (3D) point clouds has become a boon in Photogrammetry, Remote Sensing, Computer Vision, and Robotics. The aim of this paper is to compare classifying algorithms tested on an urban area point cloud acquired by a Mobile Terrestrial Laser Scanning (MTLS) system. The algorithms were tested based on local geometrical and radiometric descriptors. In this study, local descriptors such as linearity, planarity, intensity, etc. are initially extracted for each point by observing their neighbor points. These features are then imported to a classification algorithm to automatically label each point. Here, five powerful classification algorithms including k-Nearest Neighbors (k-NN), Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), Multilayer Perceptron (MLP) Neural Network, and Random Forest (RF) are tested. Eight semantic classes are considered for each method in an equal condition. The best overall accuracy of 90% was achieved with the RF algorithm. The results proved the reliability of the applied descriptors and RF classifier for MTLS point cloud classification.


2017 ◽  
Vol 8 (2) ◽  
pp. 204-209 ◽  
Author(s):  
D. Reiser ◽  
M. Vázquez-Arellano ◽  
M. Garrido Izard ◽  
D. S. Paraforos ◽  
G. Sharipov ◽  
...  

The goal of this work was to cluster maize plants perception points under six different growth stages in noisy 3D point clouds with known positions. The 3D point clouds were assembled with a 2D laser scanner mounted at the front of a mobile robot, fusing the data with the precise robot position, gained by a total station and an Inertial Measurement Unit. For clustering the single plants in the resulting point cloud, a graph-cut based algorithm was used. The algorithm results were compared with the corresponding measured values of plant height and stem position. An accuracy for the estimated height of 1.55 cm and the stem position of 2.05 cm was achieved.


Sign in / Sign up

Export Citation Format

Share Document