scholarly journals An Optical Fiber Sensor Based on La2O2S:Eu Scintillator for Detecting Ultraviolet Radiation in Real-Time

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3754 ◽  
Author(s):  
Yongji Yan ◽  
Xu Zhang ◽  
Haopeng Li ◽  
Yu Ma ◽  
Tianci Xie ◽  
...  

A novel ultraviolet (UV) optical fiber sensor (UVOFS) based on the scintillating material La2O2S:Eu has been designed, tested, and its performance compared with other scintillating materials and other conventional UV detectors. The UVOFS is based on PMMA (polymethyl methacrylate) optical fiber which includes a scintillating material. Scintillating materials provide a unique opportunity to measure UV light intensity even in the presence of strong electromagnetic interference. Five scintillating materials were compared in order to select the most appropriate one for the UVOFS. The characteristics of the sensor are reported, including a highly linear response to radiation intensity, reproducibility, temperature response, and response time (to pulsed light) based on emission from a UV source (UV fluorescence tube) centered on a wavelength of 308 nm. A direct comparison with the commercially available semiconductor-based UV sensor proves the UVOFS of this investigation shows superior performance in terms of accuracy, long-term reliability, response time and linearity.

2011 ◽  
Vol 121-126 ◽  
pp. 4166-4170
Author(s):  
Shiuh Chuan Her ◽  
Chang Yu Tsai

Optical fiber sensors with light weight, small size and immunity to electromagnetic interference have been found to be a promising device for use in the development of smart structures. It is well known that the strain transfer from the host structure to the optical fiber sensor is dependent on the bonding characteristics such as adhesive layer and bonded length. In this investigation, the optical fiber sensor is surface bonded on the host structure. A theoretical model consisting of the optical fiber, adhesive layer and host material, is proposed to determine the strain in the optical fiber sensor induced by the host structure. The theoretical predictions were validated with the numerical analysis using the finite element method.


2011 ◽  
Vol 467-469 ◽  
pp. 279-282
Author(s):  
Shiuh Chuan Her ◽  
Chang Yu Tsai

Optical fiber sensors with light weight, small dimension and immunity to electromagnetic interference are widely used in structural health monitoring device. In this investigation, a theoretical model of the strain transferred from the host material to the embedded optical fiber is developed to reveal the differential strains between the optical fiber sensor and host material. The theoretical predictions are validated with the numerical analysis using the finite element method. The percentage of strain in the host material actually transferred to the optical fiber is dependent on the bonding characteristics such as adhesive layer, protective coating and host material. Parametric study shows that the larger of the host material the more strain is transferred to the optical fiber.


2021 ◽  
Vol 11 (24) ◽  
pp. 12153
Author(s):  
Sung-Tae Kim ◽  
Young-Soo Park ◽  
Chul-Hwan Yoo ◽  
Soobong Shin ◽  
Young-Hwan Park

This study aims to develop a prestressed concrete steel (PC) strand with an embedded optical Fiber Bragg Grating (FBG) sensor, which has been developed by the Korea Institute of Civil Engineering and Building Technology since 2013. This new strand is manufactured by replacing the steel core of the normal PC strand with a carbon-fiber-reinforced polymer (CFRP) rod with excellent tensile strength and durability. Because this new strand is manufactured using the pultrusion method, which is a composite material manufacturing process, with an optical fiber sensor embedded in the inner center of the CFRP Rod, it ensures full composite action as well as proper function of the sensor. In this study, a creep test for maintaining a constant load and a relaxation test for maintaining a constant displacement were performed on the proposed sensor-type PC strand. Each of the two tests was conducted for more than 1000 h, and the long-term performance verification of the sensor-type PC strand was only completed by comparing the performance with that of a normal PC strand. The test specimens were fabricated by applying an optical fiber sensor-embedded PC strand, which had undergone long-term performance verification tests, to a reinforced concrete beam. Depending on whether grout was injected in the duct, the specimens were classified into composite and non-composite specimens. A hydraulic jack was used to prestress the fabricated beam specimens, and the long-term change in the prestress force was observed for more than 1600 days using the embedded optical fiber sensor. The experimental results were compared with the analytical results to determine the long-term prestress loss obtained through finite-element analysis based on various international standards.


2011 ◽  
Vol 201-203 ◽  
pp. 2419-2422
Author(s):  
Shiuh Chuan Her ◽  
Chang Yu Tsai

Optical fiber sensors with light weight, small dimension and immunity to electromagnetic interference are considered as a superior structural health monitoring device. It is well known that the strain transfer from the host structure to the optical fiber sensor is dependent on the bonding characteristics such as adhesive layer, protective coating and host material. In this investigation, a theoretical model with three concentric cylinders represented optical fiber, protective coating, and host material, respectively, is proposed to determine the strain in the optical fiber sensor induced by the host structure. The theoretical predictions are validated with the numerical analysis using the finite element method. The effect of host material on the strain transferred is presented through a parametric study.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4071 ◽  
Author(s):  
Qijing Lin ◽  
Na Zhao ◽  
Kun Yao ◽  
Zhuangde Jiang ◽  
Bian Tian ◽  
...  

An ordinary optical fiber ultra-high temperature sensor based on infrared radiation with the advantages of simple structure and compact is presented. The sensing system consists of a detection fiber and a common transmission fiber. The detector fiber is formed by annealing a piece of ordinary fiber at high temperature twice, which changes the properties of the fiber and breaks the temperature limit of ordinary fiber. The transmission fiber is a bending insensitive optical fiber. A static calibration system was set up to determine the performance of the sensor and three heating experiments were carried out. The temperature response sensitivities were 0.010 dBm/K, 0.009 dBm/K and 0.010 dBm/K, respectively, which indicate that the sensor has good repeatability. The sensor can withstand a high temperature of 1823 K for 58 h with an error of less than 1%. The main reason why the developed ordinary optical fiber sensor can work steadily for a long time at high temperature is the formation of β-cristobalite, which is stable at high-temperature.


2014 ◽  
Vol 580-583 ◽  
pp. 338-343
Author(s):  
Liang Lu ◽  
Zong Jian Wang ◽  
Huan Feng ◽  
Katsuhiko Arai

Geotextile have been widely used in the reinforced retaining wall, but it is not easy to measure the deformation of the wall during and after construction. To assess the deformation stability of the reinforced retaining wall, an optical fiber sensor was used in geotextile. Based on the measurement accuracy of strain for the sensor geotextile, an actual geotextile-reinforced retaining wall was studied using the fiber sensor geotextile. The experimental results were compared with the results from a numerical procedure, which employs the Mohr-Coulomb yield criterion and an initial stress method and determines the plastic displacement at collapse represented by the distribution of yield elements. The comparison shows that the numerical results have a good agreement with the corresponding measurement values. The result shows the possibility that the procedure gives the realistic evaluation of long-term deformation of reinforced retaining wall.


2021 ◽  
Vol 2075 (1) ◽  
pp. 012010
Author(s):  
Nurul Athirah Mohamad Abdul Ghafar ◽  
Arni Munira Markom ◽  
Marni Azira Markom ◽  
Ahmad Razif Muhammad

Abstract Heavy metal contaminations such as mercury, lead, arsenic, cadmium, and zinc are becoming more serious and have become a hazard to human health. Due to their non-biodegradable nature, they can easily accumulate in the environment and cause toxicity even at low concentrations. Therefore, detecting the presence of these metal ions requires a highly sensitive sensing method. Traditional detection methods, such as electrochemical analysis, require complicated sample preparation, are costly, and typically require a lengthy measurement period. These days, optical fiber sensors have been acknowledged due to their unique characteristics such as compact size, high sensitivity, low cost, high flexibility, and immunity to electromagnetic interference. An overview of an optical fiber sensor technology for heavy chemical measurement is discussed in this paper. The sensing mechanisms are summarized, as well as the chemical water quality parameters and sensitivities.


Sign in / Sign up

Export Citation Format

Share Document