scholarly journals Enhancement of Localization Systems in NLOS Urban Scenario with Multipath Ray Tracing Fingerprints and Machine Learning

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4073 ◽  
Author(s):  
Marcelo N. de Sousa ◽  
Reiner S. Thomä

A hybrid technique is proposed to enhance the localization performance of a time difference of arrival (TDOA) deployed in non-line-of-sight (NLOS) suburban scenario. The idea was to use Machine Learning framework on the dataset, produced by the ray tracing simulation, and the Channel Impulse Response estimation from the real signal received by each sensor. Conventional localization techniques mitigate errors trying to avoid NLOS measurements in processing emitter position, while the proposed method uses the multipath fingerprint information produced by ray tracing (RT) simulation together with calibration emitters to refine a Machine Learning engine, which gives an extra layer of information to improve the emitter position estimation. The ray-tracing fingerprints perform the target localization embedding all the reflection and diffraction in the propagation scenario. A validation campaign was performed and showed the feasibility of the proposed method, provided that the buildings can be appropriately included in the scenario description.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Amjad Khan ◽  
Asfandyar Khan ◽  
Javed Iqbal Bangash ◽  
Fazli Subhan ◽  
Abdullah Khan ◽  
...  

Internet of Things (IoT), an emerging technology, is becoming an essential part of today’s world. Machine learning (ML) algorithms play an important role in various applications of IoT. For decades, the location information has been extremely useful for humans to navigate both in outdoor and indoor environments. Wi-Fi access point-based indoor positioning systems get more popularity, as it avoids extra calibration expenses. The fingerprinting technique is preferred in an indoor environment as it does not require a signal’s Line of Sight (LoS). It consists of two phases: offline and online phase. In the offline phase, the Wi-Fi RSSI radio map of the site is stored in a database, and in the online phase, the object is localized using the offline database. To avoid the radio map construction which is expensive in terms of labor, time, and cost, machine learning techniques may be used. In this research work, we proposed a hybrid technique using Cuckoo Search-based Support Vector Machine (CS-SVM) for real-time position estimation. Cuckoo search is a nature-inspired optimization algorithm, which solves the problem of slow convergence rate and local minima of other similar algorithms. Wi-Fi RSSI fingerprint dataset of UCI repository having seven classes is used for simulation purposes. The dataset is preprocessed by min-max normalization to increase accuracy and reduce computational speed. The proposed model is simulated using MATLAB and evaluated in terms of accuracy, precision, and recall with K-nearest neighbor (KNN) and support vector machine (SVM). Moreover, the simulation results show that the proposed model achieves high accuracy of 99.87%.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Justin Y. Lee ◽  
Britney Nguyen ◽  
Carlos Orosco ◽  
Mark P. Styczynski

Abstract Background The topology of metabolic networks is both well-studied and remarkably well-conserved across many species. The regulation of these networks, however, is much more poorly characterized, though it is known to be divergent across organisms—two characteristics that make it difficult to model metabolic networks accurately. While many computational methods have been built to unravel transcriptional regulation, there have been few approaches developed for systems-scale analysis and study of metabolic regulation. Here, we present a stepwise machine learning framework that applies established algorithms to identify regulatory interactions in metabolic systems based on metabolic data: stepwise classification of unknown regulation, or SCOUR. Results We evaluated our framework on both noiseless and noisy data, using several models of varying sizes and topologies to show that our approach is generalizable. We found that, when testing on data under the most realistic conditions (low sampling frequency and high noise), SCOUR could identify reaction fluxes controlled only by the concentration of a single metabolite (its primary substrate) with high accuracy. The positive predictive value (PPV) for identifying reactions controlled by the concentration of two metabolites ranged from 32 to 88% for noiseless data, 9.2 to 49% for either low sampling frequency/low noise or high sampling frequency/high noise data, and 6.6–27% for low sampling frequency/high noise data, with results typically sufficiently high for lab validation to be a practical endeavor. While the PPVs for reactions controlled by three metabolites were lower, they were still in most cases significantly better than random classification. Conclusions SCOUR uses a novel approach to synthetically generate the training data needed to identify regulators of reaction fluxes in a given metabolic system, enabling metabolomics and fluxomics data to be leveraged for regulatory structure inference. By identifying and triaging the most likely candidate regulatory interactions, SCOUR can drastically reduce the amount of time needed to identify and experimentally validate metabolic regulatory interactions. As high-throughput experimental methods for testing these interactions are further developed, SCOUR will provide critical impact in the development of predictive metabolic models in new organisms and pathways.


2020 ◽  
pp. 1-12
Author(s):  
Linuo Wang

Injuries and hidden dangers in training have a greater impact on athletes ’careers. In particular, the brain function that controls the motor function area has a greater impact on the athlete ’s competitive ability. Based on this, it is necessary to adopt scientific methods to recognize brain functions. In this paper, we study the structure of motor brain-computer and improve it based on traditional methods. Moreover, supported by machine learning and SVM technology, this study uses a DSP filter to convert the preprocessed EEG signal X into a time series, and adjusts the distance between the time series to classify the data. In order to solve the inconsistency of DSP algorithms, a multi-layer joint learning framework based on logistic regression model is proposed, and a brain-machine interface system of sports based on machine learning and SVM is constructed. In addition, this study designed a control experiment to improve the performance of the method proposed by this study. The research results show that the method in this paper has a certain practical effect and can be applied to sports.


2021 ◽  
Author(s):  
Meredith L. Wallace ◽  
Timothy S. Coleman ◽  
Lucas K. Mentch ◽  
Daniel J. Buysse ◽  
Jessica L. Graves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document