scholarly journals A Novel Method of Frequency Band Selection for Squared Envelope Analysis for Fault Diagnosing of Rolling Element Bearings in a Locomotive Powertrain

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4344 ◽  
Author(s):  
Lang Xu ◽  
Steven Chatterton ◽  
Paolo Pennacchi

The development of diagnostics for rolling element bearings (REBs) in recent years makes it possible to detect faults in bearings in real-time. Squared envelope analysis (SEA), in which the statistical characteristics of the squared envelope (SE) or the squared envelope spectrum (SES) are analysed, is widely recognized as both an effective and the simplest method. The most critical step of SEA is to find an optimal frequency band that contains the maximum defect information. The most commonly used approaches for selecting the optimal frequency band are derived from measuring the kurtosis of the SE or the SES. However, most methods fail to cope with the interference of a single or a few impulses in the corresponding domain. A new method is proposed in this paper called “PMFSgram”, which just calculates the kurtosis of the SES in the range centred at the first two harmonics with a span of three times the modulation frequency rather than the entire SES of the band filtered signals. It is possible to avoid most of the interference from a small number of undesired impulses in the SES. PMFSgram uses several bandwidths from 1.5 times to 4.5 times the fault frequency and for each bandwidth has the same number of central frequencies. The frequency setting method is able to select an optimal frequency band containing most of the useful information with less noise. The performance of the new method is verified using synthesized signals and actual vibration data.

Author(s):  
S. Chatterton ◽  
P. Borghesani ◽  
P. Pennacchi ◽  
A. Vania

Diagnostics of rolling element bearings is usually performed by means of a second-order cyclostationary tool applied to the vibration signal, due to the stochastic nature of the contact between the defect and the bearing rolling elements. The most used and simple method is the Envelope Analysis that is based on the identification of bearing damage frequency components in the so-called Square Envelope Spectrum. The main critical point of this technique is the selection of a suitable frequency band for the demodulation of the vibration signal. The most used approach for the frequency band selection is based on the evaluation of the band-Kurtosis index by mean of diagrams as the frequently used Fast Kurtogram or the more recent Protrugram. Both of them may fail in the selection of the optimal frequency band when other vibration sources affect the Kurtosis index. Also critical is the constancy in the time of this optimal band. In the paper, an experimental case of a bearing damage is investigated and an alternative approach for the filter band selection, the so-called “PeaksMap”, will be proposed by the authors and compared with the ones available in the literature.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1845 ◽  
Author(s):  
Xiaohui Gu ◽  
Shaopu Yang ◽  
Yongqiang Liu ◽  
Rujiang Hao ◽  
Zechao Liu

Informative frequency band (IFB) selection is a challenging task in envelope analysis for the localized fault detection of rolling element bearings. In previous studies, it was often conducted with a single indicator, such as kurtosis, etc., to guide the automatic selection. However, in some cases, it is difficult for that to fully depict and balance the fault characters from impulsiveness and cyclostationarity of the repetitive transients. To solve this problem, a novel negentropy-induced multi-objective optimized wavelet filter is proposed in this paper. The wavelet parameters are determined by a grey wolf optimizer with two independent objective functions i.e., maximizing the negentropy of squared envelope and squared envelope spectrum to capture impulsiveness and cyclostationarity, respectively. Subsequently, the average negentropy is utilized in identifying the IFB from the obtained Pareto set, which are non-dominated by other solutions to balance the impulsive and cyclostationary features and eliminate the background noise. Two cases of real vibration signals with slight bearing faults are applied in order to evaluate the performance of the proposed methodology, and the results demonstrate its effectiveness over some fast and optimal filtering methods. In addition, its stability in tracking the IFB is also tested by a case of condition monitoring data sets.


2004 ◽  
Vol 126 (4) ◽  
pp. 567-573 ◽  
Author(s):  
D. F. Shi ◽  
W. J. Wang ◽  
L. S. Qu

In order to overcome the shortcomings in the traditional envelope analysis in which manually specifying a resonant frequency band is required, a new approach based on the fusion of the wavelet transform and envelope spectrum is proposed for detecting and localizing defects in rolling element bearings. This approach is capable of completely extracting the characteristic frequencies related to the defect from the resonant frequency band. Based on the Shannon entropy of wavelet-based envelope spectra, a criterion to select optimal scale to monitor the condition of bearings is also presented. Experiment results show that the proposed approach is sensitive and reliable in detecting defects on the outer race, inner race, and rollers of bearings.


2015 ◽  
Vol 39 (3) ◽  
pp. 593-603
Author(s):  
Xinghui Zhang ◽  
Jianshe Kang ◽  
Hongzhi Teng ◽  
Jianmin Zhao

Gear and bearing faults are the main causes of gearbox failure. Till now, incipient fault diagnosis of these two components has been a problem and needs further research. In this context, it is found that Lucy–Richardson deconvolution (LRD) proved to be an excellent tool to enhance fault diagnosis in rolling element bearings and gears. LRD’s good identification capabilities of fault frequencies are presented which outperform envelope analysis. This is very critical for early fault diagnosis. The case studies were carried out to evaluate the effectiveness of the proposed method. The results of simulated and experimental studies show that LRD is efficient in alleviating the negative effect of noise and transmission path. The results of simulation and experimental tests demonstrated outperformance of LRD compared to classical envelope analysis for fault diagnosis in rolling element bearings and gears, especially when it is applied to the processing of signals with strong background noise.


2019 ◽  
Vol 19 (2) ◽  
pp. 390-411 ◽  
Author(s):  
David Benjamin Verstraete ◽  
Enrique López Droguett ◽  
Viviana Meruane ◽  
Mohammad Modarres ◽  
Andrés Ferrada

With the availability of cheaper multisensor suites, one has access to massive and multidimensional datasets that can and should be used for fault diagnosis. However, from a time, resource, engineering, and computational perspective, it is often cost prohibitive to label all the data streaming into a database in the context of big machinery data, that is, massive multidimensional data. Therefore, this article proposes both a fully unsupervised and a semi-supervised deep learning enabled generative adversarial network-based methodology for fault diagnostics. Two public datasets of vibration data from rolling element bearings are used to evaluate the performance of the proposed methodology for fault diagnostics. The results indicate that the proposed methodology is a promising approach for both unsupervised and semi-supervised fault diagnostics.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 584
Author(s):  
Shuting Wan ◽  
Bo Peng

Early fault information of rolling bearings is weak and often submerged by background noise, easily leading to misdiagnosis or missed diagnosis. In order to solve this issue, the present paper puts forward a fault diagnosis method on the basis of adaptive frequency window (AFW) and sparse coding shrinkage (SCS). The proposed method is based on the idea of determining the resonance frequency band, extracting the narrowband signal, and envelope demodulating the extracted signal. Firstly, the paper introduces frequency window, which can slip on the frequency axis and extract the frequency band. Secondly, the double time domain feature entropy is proposed to evaluate the strength of periodic components in signal. The location of the optimal frequency window covering the resonance band caused by bearing fault is determined adaptively by this entropy index and the shifting/expanding frequency window. Thirdly, the signal corresponding to the optimal frequency window is reconstructed, and it is further filtered by the sparse coding shrinkage algorithm to highlight the impact feature and reduce the residue noise. Fourthly, the de-noised signal is demodulated by envelope operation, and the corresponding envelope spectrum is calculated. Finally, the bearing failure type can be judged by comparing the frequency corresponding to the spectral lines with larger amplitude in the envelope spectrum and the fault characteristic frequency. Two bearing vibration signals are applied to validate the proposed method. The analysis results illustrate that this method can extract more failure information and highlight the early failure feature. The data files of Case Western Reserve University for different operation conditions are used, and the proposed approach achieves a diagnostic success rate of 83.3%, superior to that of the AFW method, SCS method, and Fast Kurtogram method. The method presented in this paper can be used as a supplement to the early fault diagnosis method of rolling bearings.


Sign in / Sign up

Export Citation Format

Share Document