scholarly journals Data Fusion of Two Hyperspectral Imaging Systems with Complementary Spectral Sensing Ranges for Blueberry Bruising Detection

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4463 ◽  
Author(s):  
Shuxiang Fan ◽  
Changying Li ◽  
Wenqian Huang ◽  
Liping Chen

Currently, the detection of blueberry internal bruising focuses mostly on single hyperspectral imaging (HSI) systems. Attempts to fuse different HSI systems with complementary spectral ranges are still lacking. A push broom based HSI system and a liquid crystal tunable filter (LCTF) based HSI system with different sensing ranges and detectors were investigated to jointly detect blueberry internal bruising in the lab. The mean reflectance spectrum of each berry sample was extracted from the data obtained by two HSI systems respectively. The spectral data from the two spectroscopic techniques were analyzed separately using feature selection method, partial least squares-discriminant analysis (PLS-DA), and support vector machine (SVM), and then fused with three data fusion strategies at the data level, feature level, and decision level. The three data fusion strategies achieved better classification results than using each HSI system alone. The decision level fusion integrating classification results from the two instruments with selected relevant features achieved more promising results, suggesting that the two HSI systems with complementary spectral ranges, combined with feature selection and data fusion strategies, could be used synergistically to improve blueberry internal bruising detection. This study was the first step in demonstrating the feasibility of the fusion of two HSI systems with complementary spectral ranges for detecting blueberry bruising, which could lead to a multispectral imaging system with a few selected wavelengths and an appropriate detector for bruising detection on the packing line.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2386
Author(s):  
Asa Gholizadeh ◽  
João A. Coblinski ◽  
Mohammadmehdi Saberioon ◽  
Eyal Ben-Dor ◽  
Ondřej Drábek ◽  
...  

Soil contamination by potentially toxic elements (PTEs) is intensifying under increasing industrialization. Thus, the ability to efficiently delineate contaminated sites is crucial. Visible–near infrared (vis–NIR: 350–2500 nm) and X-ray fluorescence (XRF: 0.02–41.08 keV) spectroscopic techniques have attracted tremendous attention for the assessment of PTEs. Recently, the application of fused vis–NIR and XRF spectroscopy, which is based on the complementary effect of data fusion, is also increasing. Moreover, different data manipulation methods, including feature selection approaches, affect the prediction performance. This study investigated the feasibility of using single and fused vis–NIR and XRF spectra while exploring feature selection algorithms for the assessment of key soil PTEs. The soil samples were collected from one of the most heavily polluted areas of the Czech Republic and scanned using laboratory vis–NIR and XRF spectrometers. Univariate filter (UF) and genetic algorithm (GA) were used to select the bands of greater importance for the PTE prediction. Support vector machine (SVM) was then used to train the models using the full-range and feature-selected spectra of single sensors and their fusion. It was found that XRF spectra alone (primarily GA-selected) performed better than single vis–NIR and fused spectral data for predictions of PTEs. Moreover, the prediction models that were derived from the fused data set (particularly the GA-selected) enhanced the models’ accuracies as compared with the single vis–NIR spectra. In general, the results suggest that the GA-selected spectra obtained from the single XRF spectrometer (for As and Pb) and from the fusion of vis–NIR and XRF (for Pb) are promising for accurate quantitative estimation detection of the mentioned PTEs.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


2012 ◽  
Vol 532-533 ◽  
pp. 1191-1195 ◽  
Author(s):  
Zhen Yan Liu ◽  
Wei Ping Wang ◽  
Yong Wang

This paper introduces the design of a text categorization system based on Support Vector Machine (SVM). It analyzes the high dimensional characteristic of text data, the reason why SVM is suitable for text categorization. According to system data flow this system is constructed. This system consists of three subsystems which are text representation, classifier training and text classification. The core of this system is the classifier training, but text representation directly influences the currency of classifier and the performance of the system. Text feature vector space can be built by different kinds of feature selection and feature extraction methods. No research can indicate which one is the best method, so many feature selection and feature extraction methods are all developed in this system. For a specific classification task every feature selection method and every feature extraction method will be tested, and then a set of the best methods will be adopted.


Author(s):  
Gang Liu ◽  
Chunlei Yang ◽  
Sen Liu ◽  
Chunbao Xiao ◽  
Bin Song

A feature selection method based on mutual information and support vector machine (SVM) is proposed in order to eliminate redundant feature and improve classification accuracy. First, local correlation between features and overall correlation is calculated by mutual information. The correlation reflects the information inclusion relationship between features, so the features are evaluated and redundant features are eliminated with analyzing the correlation. Subsequently, the concept of mean impact value (MIV) is defined and the influence degree of input variables on output variables for SVM network based on MIV is calculated. The importance weights of the features described with MIV are sorted by descending order. Finally, the SVM classifier is used to implement feature selection according to the classification accuracy of feature combination which takes MIV order of feature as a reference. The simulation experiments are carried out with three standard data sets of UCI, and the results show that this method can not only effectively reduce the feature dimension and high classification accuracy, but also ensure good robustness.


2021 ◽  
Vol 335 ◽  
pp. 04001
Author(s):  
Didar Dadebayev ◽  
Goh Wei Wei ◽  
Tan Ee Xion

Emotion recognition, as a branch of affective computing, has attracted great attention in the last decades as it can enable more natural brain-computer interface systems. Electroencephalography (EEG) has proven to be an effective modality for emotion recognition, with which user affective states can be tracked and recorded, especially for primitive emotional events such as arousal and valence. Although brain signals have been shown to correlate with emotional states, the effectiveness of proposed models is somewhat limited. The challenge is improving accuracy, while appropriate extraction of valuable features might be a key to success. This study proposes a framework based on incorporating fractal dimension features and recursive feature elimination approach to enhance the accuracy of EEG-based emotion recognition. The fractal dimension and spectrum-based features to be extracted and used for more accurate emotional state recognition. Recursive Feature Elimination will be used as a feature selection method, whereas the classification of emotions will be performed by the Support Vector Machine (SVM) algorithm. The proposed framework will be tested with a widely used public database, and results are expected to demonstrate higher accuracy and robustness compared to other studies. The contributions of this study are primarily about the improvement of the EEG-based emotion classification accuracy. There is a potential restriction of how generic the results can be as different EEG dataset might yield different results for the same framework. Therefore, experimenting with different EEG dataset and testing alternative feature selection schemes can be very interesting for future work.


Author(s):  
Jian-Wu Xu ◽  
Kenji Suzuki

One of the major challenges in current Computer-Aided Detection (CADe) of polyps in CT Colonography (CTC) is to improve the specificity without sacrificing the sensitivity. If a large number of False Positive (FP) detections of polyps are produced by the scheme, radiologists might lose their confidence in the use of CADe. In this chapter, the authors used a nonlinear regression model operating on image voxels and a nonlinear classification model with extracted image features based on Support Vector Machines (SVMs). They investigated the feasibility of a Support Vector Regression (SVR) in the massive-training framework, and the authors developed a Massive-Training SVR (MTSVR) in order to reduce the long training time associated with the Massive-Training Artificial Neural Network (MTANN) for reduction of FPs in CADe of polyps in CTC. In addition, the authors proposed a feature selection method directly coupled with an SVM classifier to maximize the CADe system performance. They compared the proposed feature selection method with the conventional stepwise feature selection based on Wilks’ lambda with a linear discriminant analysis classifier. The FP reduction system based on the proposed feature selection method was able to achieve a 96.0% by-polyp sensitivity with an FP rate of 4.1 per patient. The performance is better than that of the stepwise feature selection based on Wilks’ lambda (which yielded the same sensitivity with 18.0 FPs/patient). To test the performance of the proposed MTSVR, the authors compared it with the original MTANN in the distinction between actual polyps and various types of FPs in terms of the training time reduction and FP reduction performance. The authors’ CTC database consisted of 240 CTC datasets obtained from 120 patients in the supine and prone positions. With MTSVR, they reduced the training time by a factor of 190, while achieving a performance (by-polyp sensitivity of 94.7% with 2.5 FPs/patient) comparable to that of the original MTANN (which has the same sensitivity with 2.6 FPs/patient).


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4071 ◽  
Author(s):  
Alexandra Lianou ◽  
Arianna Mencattini ◽  
Alexandro Catini ◽  
Corrado Di Natale ◽  
George-John E. Nychas ◽  
...  

The performance of an Unsupervised Online feature Selection (UOS) algorithm was investigated for the selection of training features of multispectral images acquired from a dairy product (vanilla cream) stored under isothermal conditions. The selected features were further used as input in a support vector machine (SVM) model with linear kernel for the determination of the microbiological quality of vanilla cream. Model training (n = 65) was based on two batches of cream samples provided directly by the manufacturer and stored at different isothermal conditions (4, 8, 12, and 15 °C), whereas model testing (n = 132) and validation (n = 48) were based on real life conditions by analyzing samples from different retail outlets as well as expired samples from the market. Qualitative analysis was performed for the discrimination of cream samples in two microbiological quality classes based on the values of total viable counts [TVC ≤ 2.0 log CFU/g (fresh samples) and TVC ≥ 6.0 log CFU/g (spoiled samples)]. Results exhibited good performance with an overall accuracy of classification for the two classes of 91.7% for model validation. Further on, the model was extended to include the samples in the TVC range 2–6 log CFU/g, using 1 log step to define the microbiological quality of classes in order to assess the potential of the model to estimate increasing microbial populations. Results demonstrated that high rates of correct classification could be obtained in the range of 2–5 log CFU/g, whereas the percentage of erroneous classification increased in the TVC class (5,6) that was close to the spoilage level of the product. Overall, the results of this study demonstrated that the UOS algorithm in tandem with spectral data acquired from multispectral imaging could be a promising method for real-time assessment of the microbiological quality of vanilla cream samples.


2020 ◽  
Vol 10 (3) ◽  
pp. 1173 ◽  
Author(s):  
Zhiqi Hong ◽  
Yong He

Longjing tea is one of China’s protected geographical indication products with high commercial and nutritional value. The geographical origin of Longjing tea is an important factor influencing its commercial and nutritional value. Hyperspectral imaging systems covering the two spectral ranges of 380–1030 nm and 874–1734 nm were used to identify a single tea leaf of Longjing tea from six geographical origins. Principal component analysis (PCA) was conducted on hyperspectral images to form PCA score images. Differences among samples from different geographical origins were visually observed from the PCA score images. Support vector machine (SVM) and partial least squares discriminant analysis (PLS-DA) models were built using the full spectra at the two spectral ranges. Decent classification performances were obtained at the two spectral ranges, with the overall classification accuracy of the calibration and prediction sets over 84%. Furthermore, prediction maps for geographical origins identification of Longjing tea were obtained by applying the SVM models on the hyperspectral images. The overall results illustrate that hyperspectral imaging at both spectral ranges can be applied to identify the geographical origin of single tea leaves of Longjing tea. This study provides a new, rapid, and non-destructive alternative for Longjing tea geographical origins identification.


Sign in / Sign up

Export Citation Format

Share Document