scholarly journals Spoofing Detection and Mitigation in a Multi-correlator GPS Receiver Based on the Maximum Likelihood Principle

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 37 ◽  
Author(s):  
Yanbing Guo ◽  
Lingjuan Miao ◽  
Xi Zhang

As a structural interference, spoofing is difficult to detect by the target receiver while the advent of a repeater makes the implementation of spoofing much easier. Most existing anti-spoofing methods are merely capable of detecting the spoofing, i.e., they cannot effectively remove counterfeit signals. Therefore, based on the similarities between multipath and spoofing, the feasibility of applying multipath mitigation methods to anti-spoofing is first analyzed in this paper. We then propose a novel algorithm based on maximum likelihood (ML) estimation to resolve this problem. The tracking channels with multi-correlators are constructed and a set of corresponding steps of detecting and removing the counterfeit signals is designed to ensure that the receiver locks the authentic signals in the presence of spoofing. Finally, the spoofing is successfully executed with a software receiver and the saved intermediate frequency (IF) signals, on this basis, the effectiveness of the proposed algorithm is verified by experiments.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lisa Amrhein ◽  
Christiane Fuchs

Abstract Background Tissues are often heterogeneous in their single-cell molecular expression, and this can govern the regulation of cell fate. For the understanding of development and disease, it is important to quantify heterogeneity in a given tissue. Results We present the R package stochprofML which uses the maximum likelihood principle to parameterize heterogeneity from the cumulative expression of small random pools of cells. We evaluate the algorithm’s performance in simulation studies and present further application opportunities. Conclusion Stochastic profiling outweighs the necessary demixing of mixed samples with a saving in experimental cost and effort and less measurement error. It offers possibilities for parameterizing heterogeneity, estimating underlying pool compositions and detecting differences between cell populations between samples.


Open Physics ◽  
2009 ◽  
Vol 7 (3) ◽  
Author(s):  
Antonio Scarfone ◽  
Hiroki Suyari ◽  
Tatsuaki Wada

AbstractWe reformulate the Gauss’ law of error in presence of correlations which are taken into account by means of a deformed product arising in the framework of the Sharma-Taneja-Mittal measure. Having reviewed the main proprieties of the generalized product and its related algebra, we derive, according to the Maximum Likelihood Principle, a family of error distributions with an asymptotic power-law behavior.


2007 ◽  
Vol 61 (6) ◽  
Author(s):  
J. Balán ◽  
L. Morávková ◽  
J. Linek

AbstractThe densities of the (cyclohexane + pentane, or hexane, or heptane, or octane, or nonane) systems were measured at the temperature 298.15 K by means of a vibrating-tube densimeter. Their respective excess molar volumes were calculated and correlated using the fourth-order Redlich—Kister equation, with the maximum likelihood principle being applied in the determination of the adjustable parameters. The values of excess molar volumes were negative for the cyclohexane + pentane system, whereas they were positive for the other systems with the values increasing with the number of carbon atoms in the respective alkane molecules.


Sign in / Sign up

Export Citation Format

Share Document