scholarly journals A Fetal ECG Monitoring System Based on the Android Smartphone

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 446 ◽  
Author(s):  
Li Yuan ◽  
Yanchao Yuan ◽  
Zhuhuang Zhou ◽  
Yanping Bai ◽  
Shuicai Wu

In this paper, a fetal electrocardiogram (ECG) monitoring system based on the Android smartphone was proposed. We designed a portable low-power fetal ECG collector, which collected maternal abdominal ECG signals in real time. The ECG data were sent to a smartphone client via Bluetooth. Smartphone app software was developed based on the Android system. The app integrated the fast fixed-point algorithm for independent component analysis (FastICA) and the sample entropy algorithm, for the sake of real-time extraction of fetal ECG signals from the maternal abdominal ECG signals. The fetal heart rate was computed using the extracted fetal ECG signals. Experimental results showed that the FastICA algorithm can extract a clear fetal ECG, and the sample entropy can correctly determine the channel where the fetal ECG is located. The proposed fetal ECG monitoring system may be feasible for non-invasive, real-time monitoring of fetal ECGs.

Author(s):  
Jia Hua-Ping ◽  
Zhao Jun-Long ◽  
Liu Jun

Cardiovascular disease is one of the major diseases that threaten the human health. But the existing electrocardiograph (ECG) monitoring system has many limitations in practical application. In order to monitor ECG in real time, a portable ECG monitoring system based on the Android platform is developed to meet the needs of the public. The system uses BMD101 ECG chip to collect and process ECG signals in the Android system, where data storage and waveform display of ECG data can be realized. The Bluetooth HC-07 module is used for ECG data transmission. The abnormal ECG can be judged by P wave, QRS bandwidth, and RR interval. If abnormal ECG is found, an early warning mechanism will be activated to locate the user’s location in real time and send preset short messages, so that the user can get timely treatment, avoiding dangerous occurrence. The monitoring system is convenient and portable, which brings great convenie to the life of ordinary cardiovascular users.


Author(s):  
Hassan Ali ◽  
Ben Ernest Villaneouva ◽  
Raziq Yaqub

Due to the rising number of heart patients and the apparent need for more robust electrocardiogram (ECG) monitoring of these patients, hospitals are increasingly investing in typical cloud technology or centralized hospital server based remote ECG monitoring systems. However, the deployment these systems in rural communities is limited due to the high cost factor. To counter this challenge, in this paper, we focus on the design and implementation of a low cost real time wireless ambulatory ECG monitoring system. The detected ECG signals are first filtered and amplified and then digitally converted by a microcontroller. The digitized ECG signals are then sent over a ZigBee wireless link to a gateway personal computer (PC) at patient’s premises. The received ECG data from the ZigBee connection is displayed in real time via the National Instruments (NI) Laboratory Virtual Instrument Engineering Workbench (LabVIEW) user interface on the PC for instant personalized evaluation of the ECG data. The ECG data can be saved on the PC and sent via email to a remote cardiologist or a clinician. Additionally, the gateway PC at patient’s end acts as web server for sharing patient’s data over the Internet.  The remote off-site physician (medical staff in a hospital) can use a web browser on a PC, laptop or a mobile phone with Internet connection to access patient’s real time ECG trace for monitoring, expert review and diagnosis. It is shown that the system prototype allows users to acquire reliable ECG signals effectively and simply. The proposed ambulatory ECG system offers an alternative low cost deployment strategy and is especially suited for remote cardiac monitoring of patients in rural communities.


2020 ◽  
Vol 8 (5) ◽  
pp. 4807-4811

The fetal heart signal is one of the important parameter to monitor during gestational period. It provides information regarding fetal stress condition and oxygen availability in organs. With wearable fetal monitoring system it is possible to monitor the overall health condition of the fetus from home. The paper discusses a prototype fetal ECG monitoring system that can be used by pregnant mother to monitor fetal wellbeing and transmit the data to a remote monitoring station to obtain opinion. The conventional fetal ECG monitoring system uses a gel-based electrode to acquire the signal, which cannot be used for long duration monitoring. The proposed system discusses a dry electrodes made of a textile material which does not use the gels to record the ECG signals.


2022 ◽  
Vol 32 (1) ◽  
pp. 455-466
Author(s):  
Abdulfattah Noorwali ◽  
Ameni Yengui ◽  
Kai鏰r Ammous ◽  
Anis Ammous

2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elisa Mejía-Mejía ◽  
James M. May ◽  
Mohamed Elgendi ◽  
Panayiotis A. Kyriacou

AbstractHeart rate variability (HRV) utilizes the electrocardiogram (ECG) and has been widely studied as a non-invasive indicator of cardiac autonomic activity. Pulse rate variability (PRV) utilizes photoplethysmography (PPG) and recently has been used as a surrogate for HRV. Several studies have found that PRV is not entirely valid as an estimation of HRV and that several physiological factors, including the pulse transit time (PTT) and blood pressure (BP) changes, may affect PRV differently than HRV. This study aimed to assess the relationship between PRV and HRV under different BP states: hypotension, normotension, and hypertension. Using the MIMIC III database, 5 min segments of PPG and ECG signals were used to extract PRV and HRV, respectively. Several time-domain, frequency-domain, and nonlinear indices were obtained from these signals. Bland–Altman analysis, correlation analysis, and Friedman rank sum tests were used to compare HRV and PRV in each state, and PRV and HRV indices were compared among BP states using Kruskal–Wallis tests. The findings indicated that there were differences between PRV and HRV, especially in short-term and nonlinear indices, and although PRV and HRV were altered in a similar manner when there was a change in BP, PRV seemed to be more sensitive to these changes.


2021 ◽  
Author(s):  
Sadaf Sarafan ◽  
Tai Le ◽  
Floranne Ellington ◽  
Zhijie Zhang ◽  
Michael P. H. Lau ◽  
...  

2018 ◽  
pp. 188-198 ◽  
Author(s):  
Uma Arun ◽  
Natarajan Sriraam

Today's healthcare technology provides promising solutions to cater to the needs of patients. The development of wearable physiological monitoring system has reached home-centric patients by ensuring faster healthcare services. The primary advantage of this system is activation of alarms to alert the specialist in a nearby hospital to attend to any sort of emergency. Specifically, cardiac-related problems need special attention when a 24-hour Holter monitors ECG signals and identifies the level of abnormalities under various circumstances. Although several brands of Holters exist in market, there is a huge demand for digitized Holter recorders. These recorders can simultaneously analyse cardiac signals in real time mode and store the data and reuse them for next 24 hours. As home-centric based wearable cardiac monitoring system gains much attention recently, there is a need to design and develop a cardiac monitoring system by establishing a trade-off between the required clinical diagnostic quality and cost. This research study highlights a comprehensive survey of various cardiac monitoring systems under wire, wireless and wearable modes. This provides an insight into the need of the hour in bringing a cost-effective wearable system. The study provides an insight of the technological aspects of the existing cardiac monitoring system and suggests a viable design suitable for developing countries.


Sign in / Sign up

Export Citation Format

Share Document