scholarly journals A Cross-Chain Solution to Integrating Multiple Blockchains for IoT Data Management

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2042 ◽  
Author(s):  
Yiming Jiang ◽  
Chenxu Wang ◽  
Yawei Wang ◽  
Lang Gao

With the rapid development of the internet of things (IoT), traditional industries are setting off a massive wave of digitization. In the era of the Internet of Everything, millions of devices and links in IoT pose more significant challenges to data management. Most existing solutions employ centralized systems to control IoT devices, which brings about the privacy and security issues in IoT data management. Recently, blockchain has attracted much attention in the field of IoT due to its decentralization, traceability, and non-tamperability. However, it is non-trivial to apply the current blockchain techniques to IoT due to the lack of scalability and high resource costs. Different blockchain platforms have their particular advantages in the scenario of IoT data management. In this paper, we propose a cross-chain framework to integrate multiple blockchains for efficient and secure IoT data management. Our solution builds an interactive decentralized access model which employs a consortium blockchain as the control station. Other blockchain platforms customized for specific IoT scenarios run as the backbone of all IoT devices. It is equivalent to opening the off-chain channels on the consortium blockchain. Our model merges transactions in these channels for confirmation based on the notary mechanism. Finally, we implement a prototype of the proposed model based on hyperledge Fabric and IOTA Tangle. We evaluate the performance of our method through extensive experiments. The results demonstrate the effectiveness and efficiency of our framework.

Author(s):  
Kamalendu Pal

The internet of things (IoT) is ushering a new age of technology-driven automation of information systems into the manufacturing industry. One of the main concerns with IoT systems is the lack of privacy and security preserving schemes for controlling access and ensuring the safety of the data. Many security issues arise because of the centralized architecture of IoT-based information systems. Another concern is the lack of appropriate authentication and access control schemes to moderate the access to information generated by the IoT devices in the manufacturing industry. Hence, the question that arises is how to ensure the identity of the manufacturing machinery or the communication nodes. This chapter presents the advantages of blockchain technology to secure the operation of the modern manufacturing industry in a trustless environment with IoT applications. The chapter reviews the challenges and threats in IoT applications and how integration with blockchain can resolve some of the manufacturing enterprise information systems (EIS).


Author(s):  
Alaa Ahmed Abbood ◽  
Qahtan Makki Shallal ◽  
Mohammed A. Fadhel

<p><span>Internet of Things (IoT) devices are spread in different areas such as e-tracking, e-commerce, e-home, and e-health, etc. Thus, during the last ten years, the internet of things technology (IoT) has been a research focus. Both privacy and security are the key concerns for the applications of IoT, and still face a huge number of challenges. There are many elements used to run the IoT technology which include hardware and software such as sensors, GPS, cameras, applications, and so forth. In this paper, we have analyzed and explain the technology of IoT along with its elements, security features, security issues, and threats that attached to each layer of IoT to guide the consideration of researchers into solve and understand the most serious problems in IoT environment.</span></p>


Author(s):  
Sreelakshmi K. K. ◽  
Ashutosh Bhatia ◽  
Ankit Agrawal

The internet of things (IoT) has become a guiding technology behind automation and smart computing. One of the major concerns with the IoT systems is the lack of privacy and security preserving schemes for controlling access and ensuring the security of the data. A majority of security issues arise because of the centralized architecture of IoT systems. Another concern is the lack of proper authentication and access control schemes to moderate access to information generated by the IoT devices. So the question that arises is how to ensure the identity of the equipment or the communicating node. The answer to secure operations in a trustless environment brings us to the decentralized solution of Blockchain. A lot of research has been going on in the area of convergence of IoT and Blockchain, and it has resulted in some remarkable progress in addressing some of the significant issues in the IoT arena. This work reviews the challenges and threats in the IoT environment and how integration with Blockchain can resolve some of them.


2022 ◽  
Vol 54 (7) ◽  
pp. 1-34
Author(s):  
Sophie Dramé-Maigné ◽  
Maryline Laurent ◽  
Laurent Castillo ◽  
Hervé Ganem

The Internet of Things is taking hold in our everyday life. Regrettably, the security of IoT devices is often being overlooked. Among the vast array of security issues plaguing the emerging IoT, we decide to focus on access control, as privacy, trust, and other security properties cannot be achieved without controlled access. This article classifies IoT access control solutions from the literature according to their architecture (e.g., centralized, hierarchical, federated, distributed) and examines the suitability of each one for access control purposes. Our analysis concludes that important properties such as auditability and revocation are missing from many proposals while hierarchical and federated architectures are neglected by the community. Finally, we provide an architecture-based taxonomy and future research directions: a focus on hybrid architectures, usability, flexibility, privacy, and revocation schemes in serverless authorization.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ke Wang ◽  
Zheming Yang ◽  
Bing Liang ◽  
Wen Ji

Purpose The rapid development of 5G technology brings the expansion of the internet of things (IoT). A large number of devices in the IoT work independently, leading to difficulties in management. This study aims to optimize the member structure of the IoT so the members in it can work more efficiently. Design/methodology/approach In this paper, the authors consider from the perspective of crowd science, combining genetic algorithms and crowd intelligence together to optimize the total intelligence of the IoT. Computing, caching and communication capacity are used as the basis of the intelligence according to the related work, and the device correlation and distance factors are used to measure the improvement level of the intelligence. Finally, they use genetic algorithm to select a collaborative state for the IoT devices. Findings Experimental results demonstrate that the intelligence optimization method in this paper can improve the IoT intelligence level up to ten times than original level. Originality/value This paper is the first study that solves the problem of device collaboration in the IoT scenario based on the scientific background of crowd intelligence. The intelligence optimization method works well in the IoT scenario, and it also has potential in other scenarios of crowd network.


2019 ◽  
Vol 6 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Yasmine Labiod ◽  
Abdelaziz Amara Korba ◽  
Nacira Ghoualmi-Zine

In the recent years, the Internet of Things (IoT) has been widely deployed in different daily life aspects such as home automation, electronic health, the electric grid, etc. Nevertheless, the IoT paradigm raises major security and privacy issues. To secure the IoT devices, many research works have been conducted to counter those issues and discover a better way to remove those risks, or at least reduce their effects on the user's privacy and security requirements. This article mainly focuses on a critical review of the recent authentication techniques for IoT devices. First, this research presents a taxonomy of the current cryptography-based authentication schemes for IoT. In addition, this is followed by a discussion of the limitations, advantages, objectives, and attacks supported of current cryptography-based authentication schemes. Finally, the authors make in-depth study on the most relevant authentication schemes for IoT in the context of users, devices, and architecture that are needed to secure IoT environments and that are needed for improving IoT security and items to be addressed in the future.


Subject IoT ecosystem. Significance The market for the Internet of Things (IoT) or connected devices is expanding rapidly, with no manufacturer currently forecast to dominate the supply chain. This has fragmented the emerging IoT ecosystem, triggering questions about interoperability and cybersecurity of IoT devices. Impacts Firms in manufacturing, transportation and logistics and utilities are expected to see the highest IoT spending in coming years. The pace of IoT adoption is inextricably linked to that of related technologies such as 5G, artificial intelligence and cloud computing. Data privacy and security will be the greatest constraint to IoT adoption.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1492 ◽  
Author(s):  
Pantaleone Nespoli ◽  
David Useche Pelaez ◽  
Daniel Díaz López ◽  
Félix Gómez Mármol

The Internet of Things (IoT) became established during the last decade as an emerging technology with considerable potentialities and applicability. Its paradigm of everything connected together penetrated the real world, with smart devices located in several daily appliances. Such intelligent objects are able to communicate autonomously through already existing network infrastructures, thus generating a more concrete integration between real world and computer-based systems. On the downside, the great benefit carried by the IoT paradigm in our life brings simultaneously severe security issues, since the information exchanged among the objects frequently remains unprotected from malicious attackers. The paper at hand proposes COSMOS (Collaborative, Seamless and Adaptive Sentinel for the Internet of Things), a novel sentinel to protect smart environments from cyber threats. Our sentinel shields the IoT devices using multiple defensive rings, resulting in a more accurate and robust protection. Additionally, we discuss the current deployment of the sentinel on a commodity device (i.e., Raspberry Pi). Exhaustive experiments are conducted on the sentinel, demonstrating that it performs meticulously even in heavily stressing conditions. Each defensive layer is tested, reaching a remarkable performance, thus proving the applicability of COSMOS in a distributed and dynamic scenario such as IoT. With the aim of easing the enjoyment of the proposed sentinel, we further developed a friendly and ease-to-use COSMOS App, so that end-users can manage sentinel(s) directly using their own devices (e.g., smartphone).


2019 ◽  
Vol 11 (6) ◽  
pp. 127 ◽  
Author(s):  
Michele De Donno ◽  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Antonio Bucchiarone ◽  
Manuel Mazzara

The Internet of Things (IoT) is rapidly changing our society to a world where every “thing” is connected to the Internet, making computing pervasive like never before. This tsunami of connectivity and data collection relies more and more on the Cloud, where data analytics and intelligence actually reside. Cloud computing has indeed revolutionized the way computational resources and services can be used and accessed, implementing the concept of utility computing whose advantages are undeniable for every business. However, despite the benefits in terms of flexibility, economic savings, and support of new services, its widespread adoption is hindered by the security issues arising with its usage. From a security perspective, the technological revolution introduced by IoT and Cloud computing can represent a disaster, as each object might become inherently remotely hackable and, as a consequence, controllable by malicious actors. While the literature mostly focuses on the security of IoT and Cloud computing as separate entities, in this article we provide an up-to-date and well-structured survey of the security issues of cloud computing in the IoT era. We give a clear picture of where security issues occur and what their potential impact is. As a result, we claim that it is not enough to secure IoT devices, as cyber-storms come from Clouds.


Author(s):  
Manpreet Kaur Walia ◽  
Malka N. Halgamuge ◽  
Nadeesha D. Hettikankanamage ◽  
Craig Bellamy

Numerous organizations are using aspects of the cloud to store data, but as sensitive data is placed on the cloud, privacy and security become difficult to maintain. When users upload data to the cloud, they may become increasingly vulnerable to account hijacking, unauthorized access, and the data may become unavailable because of various technical reasons. Questions remain about the security of sensitive data in the cloud, and in this chapter, the authors perform an analysis of 36 peer reviewed publications describing 30 observations of cloud computing technology (2010-2017). In the articles, applications of cloud computing include, for instance, business (26%) and the internet of things (IoT; 2%), and the result suggests that some issues are unique to a particular domain (such as business, education, health) and some issues cross all domains. The results suggest that data integrity issues have the highest number of solutions whereas data breaches have the lowest number of solutions.


Sign in / Sign up

Export Citation Format

Share Document