scholarly journals Preparation and Investigation of Silver Nanoparticle–Antibody Bioconjugates for Electrochemical Immunoassay of Tick-Borne Encephalitis

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2103 ◽  
Author(s):  
Yekaterina Khristunova ◽  
Elena Korotkova ◽  
Bohumil Kratochvil ◽  
Jiri Barek ◽  
Elena Dorozhko ◽  
...  

A new simple electrochemical immunosensor approach for the determination of antibodies to tick-borne encephalitis virus (TBEV) in immunological products was developed and tested. The assay is performed by detecting the silver reduction signal in the bioconjugates with antibodies (Ab@AgNP). Here, signal is read by cathodic linear sweep voltammetry (CLSV) through the detection of silver chloride reduction on a gold–carbon composite electrode (GCCE). Covalent immobilization of the antigen on the electrode surface was performed after thiolation and glutarization of the GCCE. Specific attention has been paid to the selection of conditions for stabilizing both the silver nanoparticles and their Ab@AgNP. A simple flocculation test with NaCl was used to select the concentration of antibodies, and the additional stabilizer bovine serum albumin (BSA) was used for Ab@AgNP preparation. The antibodies to TBEV were quantified in the range from 50 IU·mL−1 to 1600 IU·mL−1, with a detection limit of 50 IU·mL−1. The coefficient of determination (r2) is 0.989. The electrochemical immunosensor was successfully applied to check the quality of immunological products containing IgG antibodies to TBEV. The present work paves the path for a novel method for monitoring TBEV in biological fluids.

Author(s):  
Ekaterina P. Khristunova ◽  
Bohumil Kratochvil ◽  
Elena V. Dorozhko ◽  
Elena I. Korotkova

In the past decade, interest to electrochemical assays have grown for determination antibodies in clinical and biological samples, where instead of the enzyme label metal nanoparticle is used. Such types of electrochemical immunosensors represent an upcoming trend in analytical chemistry. In this work, the electrochemical behavior of silver nanoparticles conjugated with antibodies to tick-borne encephalitis virus at different stages of electrode modification is investigated. Silver nanoparticles were obtained by chemical reduction from silver nitrate. Passive adsorption was chosen as a strategy for binding silver nanoparticles to antibodies to tick-borne encephalitis virus. The optimal ratio of antibodies to tick-borne encephalitis virus (4.5 IU ml-1) in a solution of silver nanoparticles [1 mmol l-1 AgNO3] was found experimentally. The development of an electrochemical immunosensor was based on indirect, non-competitive format of enzyme-linked immunosorbent assay. The electrochemical situation on the electrode surface after modification steps was demonstrated by cyclic voltammetry using a standard redox pair [Fe(CN)6]3-/[Fe(CN)6]4-. Glassy carbon electrode with electrochemically deposited gold nanoparticles was used as a platform for immobilization of biological material. It has been established that after sensitization of the electrode with antigen, passivation of the surface occurs. The voltammetric signal was recorded through the detection of silver ions oxidation on unmodified glassy carbon electrode under the working conditions: scan rate 0.1 V s-1, potential accumulation –0.8 V, accumulation time 60 s. Thus, this work paves the way for a new alternative method for monitoring antibodies to tick-borne encephalitis virus in biological fluids.


Author(s):  
Joon Young Song

Although no human case of tick-borne encephalitis (TBE) has been documented in South Korea to date, surveillance studies have been conducted to evaluate the prevalence of tick-borne encephalitis virus (TBEV) in wild ticks.


Author(s):  
Jana Kerlik

The former Czechoslovak Republic was one of the first countries in Europe where the tick-borne encephalitis virus (TBEV) was identified.


Tick-borne encephalitis virus (TBEV) was isolated for the first time in Sweden in 1958 (from ticks and from 1 tick-borne encephalitis [TBE] patient).1 In 2003, Haglund and colleagues reported the isolation and antigenic and genetic characterization of 14 TBEV strains from Swedish patients (samples collected 1991–1994).2 The first serum sample, from which TBEV was isolated, was obtained 2–10 days after onset of disease and found to be negative for anti-TBEV immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA), whereas TBEV-specific IgM (and TBEV-specific immunoglobulin G/cerebrospinal fluid [IgG/CSF] activity) was demonstrated in later serum samples taken during the second phase of the disease.


Tick-borne encephalitis virus (TBEV) exists in natural foci, which are areas where TBEV is circulating among its vectors (ticks of different species and genera) and reservoir hosts (usually rodents and small mammals). Based on phylogenetic studies, four TBEV subtypes (Far-Eastern, Siberian, European, Baikalian) and two putative subtypes (Himalayan and “178-79” group) are known. Within each subtype, some genetic lineages are described. The European subtype (TBEV-EU) (formerly known also as the “Western subtype”) of TBEV is prevalent in Europe, but it was also isolated in Western and Eastern Siberia in Russia and South Korea. The Far-Eastern subtype (TBEV-FE) was preferably found in the territory of the far-eastern part of Eurasia, but some strains were isolated in other regions of Eurasia. The Siberian (TBEV-SIB) subtype is the most common and has been found in almost all TBEV habitat areas. The Baikalian subtype is prevalent around Lake Baikal and was isolated several times from ticks and rodents. In addition to the four TBEV subtypes, one single isolate of TBEV (178-79) and two genetic sequences (Himalayan) supposed to be new TBEV subtypes were described in Eastern Siberia and China. The data on TBEV seroprevalence in humans and animals can serve as an indication for the presence or absence of TBEV in studied area.


Author(s):  
E.V. Molchanova ◽  
D.N. Luchinin ◽  
A.O. Negodenko ◽  
D.R. Prilepskaya ◽  
N.V. Boroday ◽  
...  

The paper presents data from the monitoring studies’ results of arbovirus infections transmitted by mosquitoes in the Volgograd region. West Nile virus antigen (WNV) in 9 samples, Tahyna virus in one sample, Batai virus in two samples were detected in the study of 110 samples of field material (blood-sucking mosquitoes) by ELISA test. Antibodies to WNV in 16.58 percent of the samples, to tick-borne encephalitis virus in 1.08 percent, to viruses of the California serogroup and Ukuniemi in 1.09 percent, to the virus Sindbis in 2.17 percent were detected as a result of the study of blood serum samples from donors in the Volgograd region. Thus, we obtained data on the probable presence of the Batai, Sindbis, Ukuniemi and Californian serogroup viruses along with the circulation of WNV on the territory of the Volgograd region.


Sign in / Sign up

Export Citation Format

Share Document