scholarly journals Tapered Optical Fibre Sensors: Current Trends and Future Perspectives

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2294 ◽  
Author(s):  
Sergiy Korposh ◽  
Stephen James ◽  
Seung-Woo Lee ◽  
Ralph Tatam

The development of reliable, affordable and efficient sensors is a key step in providing tools for efficient monitoring of critical environmental parameters. This review focuses on the use of tapered optical fibres as an environmental sensing platform. Tapered fibres allow access to the evanescent wave of the propagating mode, which can be exploited to facilitate chemical sensing by spectroscopic evaluation of the medium surrounding the optical fibre, by measurement of the refractive index of the medium, or by coupling to other waveguides formed of chemically sensitive materials. In addition, the reduced diameter of the tapered section of the optical fibre can offer benefits when measuring physical parameters such as strain and temperature. A review of the basic sensing platforms implemented using tapered optical fibres and their application for development of fibre-optic physical, chemical and bio-sensors is presented.

2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
K. S. C. Kuang ◽  
S. T. Quek ◽  
C. G. Koh ◽  
W. J. Cantwell ◽  
P. J. Scully

While a number of literature reviews have been published in recent times on the applications of optical fibre sensors in smart structures research, these have mainly focused on the use of conventional glass-based fibres. The availability of inexpensive, rugged, and large-core plastic-based optical fibres has resulted in growing interest amongst researchers in their use as low-cost sensors in a variety of areas including chemical sensing, biomedicine, and the measurement of a range of physical parameters. The sensing principles used in plastic optical fibres are often similar to those developed in glass-based fibres, but the advantages associated with plastic fibres render them attractive as an alternative to conventional glass fibres, and their ability to detect and measure physical parameters such as strain, stress, load, temperature, displacement, and pressure makes them suitable for structural health monitoring (SHM) applications. Increasingly their applications as sensors in the field of structural engineering are being studied and reported in literature. This article will provide a concise review of the applications of plastic optical fibre sensors for monitoring the integrity of engineering structures in the context of SHM.


Author(s):  
Carolin Helbig ◽  
Maximilian Ueberham ◽  
Anna Maria Becker ◽  
Heike Marquart ◽  
Uwe Schlink

AbstractGlobal population growth, urbanization, and climate change worsen the immediate environment of many individuals. Elevated concentrations of air pollutants, higher levels of acoustic noise, and more heat days, as well as increasingly complex mixtures of pollutants pose health risks for urban inhabitants. There is a growing awareness of the need to record personal environmental conditions (“the human exposome”) and to study options and implications of adaptive and protective behavior of individuals. The vast progress in smart technologies created wearable sensors that record environmental as well as spatio-temporal data while accompanying a person. Wearable sensing has two aspects: firstly, the exposure of an individual is recorded, and secondly, individuals act as explorers of the urban area. A literature review was undertaken using scientific literature databases with the objective to illustrate the state-of-the-art of person-based environmental sensing in urban settings. We give an overview of the study designs, highlight and compare limitations as well as results, and present the results of a keyword analysis. We identify current trends in the field, suggest possible future advancements, and lay out take-home messages for the readers. There is a trend towards studies that involve various environmental parameters and it is becoming increasingly important to identify and quantify the influence of various conditions (e.g., weather, urban structure, travel mode) on people’s exposure.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4530
Author(s):  
Youcef Bouzidi ◽  
Zoubayre El Akili ◽  
Antoine Gademer ◽  
Nacef Tazi ◽  
Adil Chahboun

This paper investigates adaptive thermal comfort during summer in medical residences that are located in the French city of Troyes and managed by the Association of Parents of Disabled Children (APEI). Thermal comfort in these buildings is evaluated using subjective measurements and objective physical parameters. The thermal sensations of respondents were determined by questionnaires, while thermal comfort was estimated using the predicted mean vote (PMV) model. Indoor environmental parameters (relative humidity, mean radiant temperature, air temperature, and air velocity) were measured using a thermal environment sensor during the summer period in July and August 2018. A good correlation was found between operative temperature, mean radiant temperature, and PMV. The neutral temperature was determined by linear regression analysis of the operative temperature and Fanger’s PMV model. The obtained neutral temperature is 23.7 °C. Based on the datasets and questionnaires, the adaptive coefficient α representing patients’ capacity to adapt to heat was found to be 1.261. A strong correlation was also observed between the sequential thermal index n(t) and the adaptive temperature. Finally, a new empirical model of adaptive temperature was developed using the data collected from a longitudinal survey in four residential buildings of APEI in summer, and the obtained adaptive temperature is 25.0 °C with upper and lower limits of 24.7 °C and 25.4 °C.


2021 ◽  
pp. 174464
Author(s):  
Shadma Wahab ◽  
Mohammad Y. Alshahrani ◽  
M.D. Faruque Ahmad ◽  
Hashim Abbas

2014 ◽  
Vol 52 (8) ◽  
pp. 4669-4678 ◽  
Author(s):  
Hardeep S. Tuli ◽  
Prachi Chaudhary ◽  
Vikas Beniwal ◽  
Anil K. Sharma

Author(s):  
Iris Slutzky-Goldberg

Vital pulp therapy (VPT), including direct pulp capping, partial and cervical Pulpotomy, was suggested for the treatment of young teeth, with reversible or irreversible pulpitis [1]. Maintaining the vitality of immature teeth enables continued root development, maturogenesis, and a better prognosis


Sign in / Sign up

Export Citation Format

Share Document