scholarly journals Logarithmic-Domain Array Interpolation for Improved Direction of Arrival Estimation in Automotive Radars

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2410 ◽  
Author(s):  
Seongwook Lee ◽  
Seong-Cheol Kim

In automotive radar systems, a limited number of antenna elements are used to estimate the angle of the target. Therefore, array interpolation techniques can be used for direction of arrival (DOA) estimation to achieve high angular resolution. In general, to generate interpolated array elements from original array elements, the method of linear least squares (LLS) is used. When the LLS method is used, the amplitudes of the interpolated array elements may not be equivalent to those of the original array elements. In addition, through the transformation matrix obtained from the LLS method, the phases of the interpolated array elements are not precisely generated. Therefore, we propose an array transformation matrix that generates accurate phases for interpolated array elements to improve DOA estimation performance, while maintaining constant amplitudes of the array elements. Moreover, to enhance the effect of our interpolation method, a power calibration method for interpolated received signals is also proposed. Through the simulation, we confirm that the array interpolation accuracy and DOA estimation performance of the proposed method are improved compared to those of the conventional method. Moreover, the performance and effectiveness of our proposed method are also verified using data obtained from the commercial radar system. Because the proposed method exhibits better performance when applied to actual measurement data, it can be utilized in commercial automotive radar systems.

2014 ◽  
Vol 6 (3-4) ◽  
pp. 397-404 ◽  
Author(s):  
Steffen Lutz ◽  
Thomas Walter ◽  
Robert Weigel

The demanding tasks for automotive radar systems in multitarget scenarios require an increased target separation performance and new sensor concepts. In this contribution, a highly integrated 77 GHz time domain multiplex (TDM) MIMO radar is presented. The sensor is feasible for advanced direction of arrival (DOA) estimation in azimuth and elevation. For efficient and high-quality measurements a fractional-n phased locked loop (PLL) with integrated waveform generator, enabling chirp and frequency modulated continous waveform (FMCW) modulations, is implemented. Spatial beamforming is done with series feed array patch antennas in combination with a dielectric cylindrical lens. For the improvement of the direction of arrival (DOA) estimation performance a new lens-based MIMO radar approach is introduced. Therefore the classical MIMO approach is combined with the advantages of an optical beamforming concept. Due to the usage of these techniques the sensor performance in accuracy, ambiguity suppression, and angular resolution can be significantly increased.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2788 ◽  
Author(s):  
Yuehao Guo ◽  
Xianpeng Wang ◽  
Wensi Wang ◽  
Mengxing Huang ◽  
Chong Shen ◽  
...  

In the paper, the estimation of joint direction-of-departure (DOD) and direction-of-arrival (DOA) for strictly noncircular targets in multiple-input multiple-output (MIMO) radar with unknown mutual coupling is considered, and a tensor-based angle estimation method is proposed. In the proposed method, making use of the banded symmetric Toeplitz structure of the mutual coupling matrix, the influence of the unknown mutual coupling is removed in the tensor domain. Then, a special enhancement tensor is formulated to capture both the noncircularity and inherent multidimensional structure of strictly noncircular signals. After that, the higher-order singular value decomposition (HOSVD) technology is applied for estimating the tensor-based signal subspace. Finally, the direction-of-departure (DOD) and direction-of-arrival (DOA) estimation is obtained by utilizing the rotational invariance technique. Due to the use of both noncircularity and multidimensional structure of the detected signal, the algorithm in this paper has better angle estimation performance than other subspace-based algorithms. The experiment results verify that the method proposed has better angle estimation performance.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 47714-47727 ◽  
Author(s):  
Heonkyo Sim ◽  
Seongwook Lee ◽  
Seokhyun Kang ◽  
Seong-Cheol Kim

2000 ◽  
Vol 53 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Sarah Lawton ◽  
Chris Andrews ◽  
Debra Topham

The idea of incorporating radar systems into vehicles to improve road traffic safety dates back to the 1970s. Such systems are now reaching the market as recent advances in technology have allowed the signal processing requirements and the high angular resolution requirements from physically small antennas to be realised. Automotive radar systems have the potential for a number of different applications including adaptive cruise control (ACC) and anti-collision devices. This paper summarises recent developments in test methods that have been made to satisfy the compliance requirements for emissions and immunity.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jiangzehui Yan ◽  
Luping Xu ◽  
Weihao Tie ◽  
Dan Jiang

Apart from interfering in the communication system of an aircraft, electromagnetic pulses (EMPs) radiated from spark discharge plasma, which is generated during high-speed flight, can also be utilized in passive detection. In order to validate this idea, an experiment on direction of arrival (DOA) estimation of a spark discharge plasma target using its radiated EMPs is carried out in this paper. A combined time-domain antenna is designed based on the model of spark discharge process and is used to receive the radiated EMPs during the experiment. According to the experimental results, the DOA estimation system with combined antenna is able to obtain the direction information of a spark discharge plasma. Results also show that the estimation performance of elevation angle is better when the actual elevation angle of the discharge plasma target is higher, while the estimation performance of azimuth is opposite. The azimuth angle of a target has very little influence on the DOA estimation. Moreover, the estimation error can be reduced effectively by increasing the aperture size of receiving array. The previously mentioned results provide an approach to locate the discharge plasma source using radiated EMPs with passive detection techniques.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Huaxin Yu ◽  
Xiaofeng Qiu ◽  
Xiaofei Zhang ◽  
Chenghua Wang ◽  
Gang Yang

We investigate the topic of two-dimensional direction of arrival (2D-DOA) estimation for rectangular array. This paper links angle estimation problem to compressive sensing trilinear model and derives a compressive sensing trilinear model-based angle estimation algorithm which can obtain the paired 2D-DOA estimation. The proposed algorithm not only requires no spectral peak searching but also has better angle estimation performance than estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm. Furthermore, the proposed algorithm has close angle estimation performance to trilinear decomposition. The proposed algorithm can be regarded as a combination of trilinear model and compressive sensing theory, and it brings much lower computational complexity and much smaller demand for storage capacity. Numerical simulations present the effectiveness of our approach.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5431
Author(s):  
Youngmin Choo ◽  
Yongsung Park ◽  
Woojae Seong

The compressive time delay estimation (TDE) is combined with delay-and-sum beamforming to obtain direction-of-arrival (DOA) estimates in the time domain. Generally, the matched filter that detects the arrivals at the hydrophone is used with beamforming. However, when the ocean noise smears the arrivals, ambiguities appear in the beamforming results, degrading the DOA estimation. In this work, compressive sensing (CS) is applied to accurately evaluate the arrivals by suppressing the noise, which enables the correct detection of arrivals. For this purpose, CS is used in two steps. First, the candidate time delays for the actual arrivals are calculated in the continuous time domain using a grid-free CS. Then, the dominant arrivals constituting the received signal are selected by a conventional CS using the time delays in the discrete time domain. Basically, the compressive TDE is used with a single measurement. To further reduce the noise, common arrivals over multiple measurements, which are obtained using the extended compressive TDE, are exploited. The delay-and-sum beamforming technique using refined arrival estimates provides more pronounced DOAs. The proposed scheme is applied to shallow-water acoustic variability experiment 15 (SAVEX15) measurement data to demonstrate its validity.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Aihua Liu ◽  
Qiang Yang ◽  
Xin Zhang ◽  
Weibo Deng

A method of direction-of-arrival (DOA) estimation using array interpolation is proposed in this paper to increase the number of resolvable sources and improve the DOA estimation performance for coprime array configuration with holes in its virtual array. The virtual symmetric nonuniform linear array (VSNLA) of coprime array signal model is introduced, with the conventional MUSIC with spatial smoothing algorithm (SS-MUSIC) applied on the continuous lags in the VSNLA; the degrees of freedom (DoFs) for DOA estimation are obviously not fully exploited. To effectively utilize the extent of DoFs offered by the coarray configuration, a compressing sensing based array interpolation algorithm is proposed. The compressing sensing technique is used to obtain the coarse initial DOA estimation, and a modified iterative initial DOA estimation based interpolation algorithm (IMCA-AI) is then utilized to obtain the final DOA estimation, which maps the sample covariance matrix of the VSNLA to the covariance matrix of a filled virtual symmetric uniform linear array (VSULA) with the same aperture size. The proposed DOA estimation method can efficiently improve the DOA estimation performance. The numerical simulations are provided to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document