scholarly journals Decision Support System for Variable Rate Irrigation Based on UAV Multispectral Remote Sensing

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2880 ◽  
Author(s):  
Xiang Shi ◽  
Wenting Han ◽  
Ting Zhao ◽  
Jiandong Tang

Rational utilization of water resources is one of the major methods of water conservation. There are significant differences in the irrigation needs of different agricultural fields because of their spatial variability. Therefore, a decision support system for variable rate irrigation (DSS-VRI) by center pivot was developed. This system can process multi-spectral images taken by unmanned aerial vehicles (UAVs) and obtain the vegetation index (VI). The crop evapotranspiration model (ETc) and crop water stress index (CWSI) were obtained from their established relationships with the VIs. The inputs to the fuzzy inference system were constituted with ETc, CWSI and precipitation. To provide guidance for users, the duty-cycle control map was outputted using ambiguity resolution. The control command contained in the map adjusted the duty cycle of the solenoid valve, and then changed the irrigation amount. A water stress experiment was designed to verify the rationality of the DSS-VRI. The results showed that the more severe water stress is, the more irrigation is obtained, consistent with the expected results. Meanwhile, a user-friendly software interface was developed to implement the DSS-VRI function.

2020 ◽  
Vol 63 (5) ◽  
pp. 1295-1303
Author(s):  
Kenneth C. Stone ◽  
Phil J. Bauer ◽  
Susan O’Shaughnessy ◽  
Alejandro Andrade-Rodriguez ◽  
Steven Evett

HighlightsA decision support system using the USDA-ARS Irrigation Scheduling and Supervisory Control and Data Acquisition (ISSCADA) system was evaluated for spatially managing corn irrigation in the U.S. Eastern Coastal Plain.The ISSCADA system was compared to traditional scheduling methods based on measured soil water potentials.The ISSCADA system with feedback on allowable soil water depletion shows potential as a tool for growers for managing variable-rate irrigation systems.Abstract. Variable-rate irrigation (VRI) systems are capable of applying different water depths both in the direction of travel and along the length of the irrigation system. VRI systems maybe useful for improving crop water management and efficiency. Although VRI technology is available and has high grower interest, it has had limited adoption. To address this, researchers have developed a decision support system that uses remote sensing of plant, soil, and microclimate to schedule VRI irrigations. In this research, we evaluated the use of the USDA-ARS Irrigation Scheduling and Supervisory Control and Data Acquisition (ISSCADA) system for spatially managing corn irrigation in the U.S. Eastern Coastal Plain. The ISSCADA system consists of center pivot mounted infrared thermometers (IRT) to measure crop canopy temperatures and in situ soil water sensors. An integrated crop water stress index (iCWSI) was calculated from the canopy temperatures. The ISSCADA system analyzes the iCWSI and soil water measurements to provide an irrigation recommendation. The ISSCADA system was evaluated using (1) iCWSI values and (2) a hybrid ISSCADA system that incorporated both iCWSI values and soil water depletion criteria. These ISSCADA treatments were compared to traditional irrigation management using measured soil water potentials. The ISSCADA system was evaluated for four years. In 2016 and 2017, corn yields and water use efficiency were not significantly different between the irrigation treatments due to adequate rainfall during the growing season. In 2018 and 2019, mid-season drought conditions and sporadic rainfall patterns required frequent irrigations. In both years, the irrigation treatment corn yields were not significantly different from each other but were greater than the rainfed yields. In 2018, the irrigation treatments produced corn yields of 10.7, 10.4, and 10.1 Mg ha-1 for the hybrid, ISSCADA, and SWP treatments, respectively. Over the four-year study, the water use efficiencies of the irrigation treatments were not significantly different from each other or the rainfed treatment and ranged from 16.6 to 22.7 kg ha-1 mm-1. In the two years that the hybrid ISSCADA system was used for managing irrigations, it produced higher corn yields and required less irrigation than the standard ISSCADA treatments. Results from this experiment will help to evaluate and refine the ISSCADA system to provide a tool for growers to use in managing spatial irrigation with VRI systems. Keywords: Crop water stress, Decision support system, Variable rate irrigation.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1773
Author(s):  
Bogdan Walek ◽  
Ondrej Pektor ◽  
Radim Farana

This paper describes a novel approach in the area of evaluating suitable job applicants for various job positions, and specifies typical areas of requirement and their usage. Requirements for this decision-support system are defined in order to be used in middle-size companies. Suitable tools chosen were fuzzy expert systems, primarily the inference system Takagi-Sugeno type, which were then supplied with implementation of methods of variant multi-criteria analysis. The resulting system is a variable tool with the possibility to simply set the importance of individual selection criteria so that it can be used in various situations, primarily in repeated selection procedures for similar job positions. A strong emphasis is devoted to the explanatory module, which enables the results of the expert system to be used easily. Verification of the system on real data in cooperation with a collaborating company has proved that the system is easily usable.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Ri Sabti Septarini

ABSTRACTHuman are always faced with taking a decision. It also happens to a company in the process of determining which employees. In determination the production plan required a lot of considerations in case of taking decisions. Beside that, the number of employees in a company is to determine who get the production plan of the achievement. System is made to determine employees who will get benefits achievement based on the some criteria have been determined by the company. These criterias will be used as fuzzy input which also process a called fuzzy variables. In this research will construct decision support system by using fuzzy logic with fuzzy variables input that are productivity, quality tabbing and discipline. In of fuzzy logic method there are three stages, namely stage fuzzification, inference and deffuzification. At this stage of the fuzzy inference used the Sugeno method. The results of this experiments has performed that the system is able to display the production planning data for the calculation of the value of production that have been determined based on fuzzy logic with fuzzy variables. Keyword: Decision Support System, Fuzzy Logic,  Sugeno.


Sign in / Sign up

Export Citation Format

Share Document