scholarly journals Fault Detection in Power Equipment via an Unmanned Aerial System Using Multi Modal Data

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3014 ◽  
Author(s):  
Bushra Jalil ◽  
Giuseppe Riccardo Leone ◽  
Massimo Martinelli ◽  
Davide Moroni ◽  
Maria Antonietta Pascali ◽  
...  

The power transmission lines are the link between power plants and the points of consumption, through substations. Most importantly, the assessment of damaged aerial power lines and rusted conductors is of extreme importance for public safety; hence, power lines and associated components must be periodically inspected to ensure a continuous supply and to identify any fault and defect. To achieve these objectives, recently, Unmanned Aerial Vehicles (UAVs) have been widely used; in fact, they provide a safe way to bring sensors close to the power transmission lines and their associated components without halting the equipment during the inspection, and reducing operational cost and risk. In this work, a drone, equipped with multi-modal sensors, captures images in the visible and infrared domain and transmits them to the ground station. We used state-of-the-art computer vision methods to highlight expected faults (i.e., hot spots) or damaged components of the electrical infrastructure (i.e., damaged insulators). Infrared imaging, which is invariant to large scale and illumination changes in the real operating environment, supported the identification of faults in power transmission lines; while a neural network is adapted and trained to detect and classify insulators from an optical video stream. We demonstrate our approach on data captured by a drone in Parma, Italy.

2014 ◽  
Vol 17 (1) ◽  
pp. 16-29
Author(s):  
Long Van Hoang Vo ◽  
Tu Phan Vu

The population explosion and development of the national economy are two main causes of increasing the power demand. Besides, the Distributed Generations (DG) connected with the power transmission and distribution networks increase the transmission power on the existing lines as well. In general, for solving this problem, power utilities have to install some new power transmission and distribution lines. However, in some cases, the install of new power lines can strongly effect to the environment and even the economic efficiency is low. Nowadays, the problem considered by scientists, researchers and engineers is how to use efficiently the existing power transmission and distribution lines through calculating and monitoring their current carrying capacity at higher operation temperature, and thus the optimal use of these existing lines will bring higher efficiency to power companies. Generally, the current carrying capacity of power lines is computed based on the calculation of their thermal fields illustrated in IEEE [1], IEC [2] and CIGRE [3]. In this paper, we present the new approach that is the application of the finite element method based on Comsol Multiphysics software for modeling thermal fields of overhead power transmission lines. In particular, we investigate the influence of environmental conditions, such as wind velocity, wind direction, temperature and radiation coefficient on the typical line of ACSR. The comparisons between our numerical solutions and those obtained from IEEE have been shown the high accuracy and applicability of finite element method to compute thermal fields of overhead power transmission lines.


2020 ◽  
Vol 23 (2) ◽  
pp. 16-19
Author(s):  
G. SHEINA ◽  

This paper investigates a mathematical model of one elements of the power supply system - power transmission lines. The type of models depends on the initial simplifications, which in turn are determined by the complexity of the physics of processes. The task of improving the accuracy of modeling of emergency processes in the power system is due to the significant complexity of modern power systems and their equipment, high-speed relay protection, automation of emergency management and the introduction of higher-speed switching equipment. One of the reasons for a significant number of serious emergencies in the system is the lack of complete and reliable information for modeling modes in the design and operation of power systems. The development of a mathematical model of a three-phase power line, which provides adequate reflection of both normal and emergency processes, is relevant. The advanced mathematical model of power transmission lines allows to investigate various operational modes of electric networks. The improved mathematical model of the power transmission line reflects all the features of physical processes at state modes and transient process and provides sufficient accuracy of the results. The type of mathematical model of power transmission lines depends on the accepted simplifications, depending on the task of research. The purpose of this work is to analyze the mathematical model of the power transmission line to study the modes of operation of the power supply system, with the possibility of its application to take into account all the design features of overhead and cable power lines. The mathematical model of the power line for the study of the modes of operation of the power supply system is analyzed. It is used to take into account the design features of overhead and cable power lines, skin effect.


Author(s):  
Pham Van Kien Pham

Vietnam\'s electricity system has been increasingly invested in development, meeting the growth rate of energy consumption demand in all socio-economic aspects. In particular, the energization and commission of solar and wind power plants greatly affect the stability and safety of the Vietnam power system. To improve the system\'s stability when incidents occur, one of the current solutions is to coordinate relay calibration settings which have a rapid reaction time at all voltage levels. To meet the above requirements, an option is to use Intelligent Electronic Device (IED) with fast processing speed, reduced latency, and multiple functions with intelligent algorithms. In addition, the solution to coordinate the protection areas between IEDs is being concerned. This paper presents the coordination of Permissive Over-Reaching Transfer Trip (POTT) interlock function of SEL 311L relay for power transmission lines to reduce the fault clearing time compared to the traditional calculation method.


2020 ◽  
pp. 63-68
Author(s):  
D. A. Polyakov ◽  
◽  
N. A. Tereschenko ◽  
I. V. Komarov ◽  
K. I. Nikitin ◽  
...  

The article describes the study of the characteristics of partial discharges (PD) in various types of artificial defects in cable lines. A total of 13 types of insulation defects are considered. The PD measurements are carried out using a high AC voltage source and a commercial PD recorder. For each type of defect, diagrams of the amplitude-phase distribution of PD (APDPD), the average value of the apparent discharge, and the PD intensity are obtained. The results of the study show that most of the defects of insulators of overhead power lines have a relatively high intensity of partial discharges with a small average apparent charge. In the samples of cable lines, relatively high values of intensity and average apparent discharge are recorded in the presence of a defect in the end seal and a defect in the ground electrode in the form of a needle. The results obtained can be used in the development of devices for detecting defects, as well as for expanding the base of diagrams (APDPD)


Author(s):  
Abdullayev Ibrohim Numanovich ◽  
Marupov Azizxon Abbosxonovich

Practice shows that the lack or late receipt of information with special conditions for the use of territories often has a negative impact not only on the budget and time frame for the construction of a real estate facility, but also on the fate of the built facility in general. The protection areas of underground and above-ground engineering communications play an important role for the future in land use. And also, when using these lands for agricultural needs, with the correct organization of cadastral relations represents the relevance of the issue under study. In the present, as an example, a section of high-voltage power transmission lines (power lines) of 1 km length is presented. KEY WORDS: security zones, land plot, information about zones, high-voltage zones, power transmission lines, pipelines, gas pipelines, bonality score, engineering networks, construction of buildings and structures.


Author(s):  
Hamed Fasihi Pour Parizi ◽  
Saeed Seyedtabaii ◽  
Mahdi Akhbari

Purpose The purpose of this study is to develop an algorithm to accurately detect faults in series capacitor compensated (SCC) power transmission lines. The line fault must be distinguished from stable power swing, compensating unit malfunction and defects on other lines sharing the same bus (external faults). Design/methodology/approach In this regard, an effective fault feature extractor based on the cumulative sum (CUSUM) of the amplified second harmonic of the phase currents is suggested. The features are then applied to an artificial neural network for classification. No-fault cases include stable power swing and several disturbances. Due to the independent analysis of each phase, faulty phase detection is also a by-product. Findings Various fault scenarios are defined, and the algorithm success rate is compared with some newly published methods. Extensive simulations performed over a single-machine infinite bus, a 3-machine, 9-bus and the large-scale New England IEEE 39-Bus networks all indicate that the proposed algorithm can trip the faulty line more quickly and accurately than the contestant algorithms. Originality/value Suggestion of a new algorithm based on the CUSUM of the amplified second harmonic of the phase current for the fault feature extraction that is able to isolate the transmission line internal faults from stable poser swing, line compensating unit malfunction and faults on the adjacent lines connected to the same bus.


2019 ◽  
Vol 114 ◽  
pp. 04001
Author(s):  
Yu.N. Bulatov ◽  
A.V. Kryukov ◽  
A.V. Cherepanov

The increase in the trains weight and their operation speeds leads to considerable growth of abrupt-variable, non-linear and one-phase traction loads. This, in its own turn, leads to significant deviations, unsymmetry and voltage harmonic distortions in 110-220 kV mains adjacent to traction substations of AC railroads. Significant deterioration in power quality factors is observed in Siberian and Far East regions where 110-220 kV main power transmission lines are immediately adjacent to Transsib traction substations; in this case, in points with lower levels of short circuit power, power quality factors exceed by far the permissible levels. The articles provides the results of studies aimed at solution of power quality enhancement is-sues for mains adjacent to traction substations of Trans-Siberian Railway. To enhance power quality in mains supplying traction substations, smart grid technologies can be used together with multiagent control systems. Technical solutions, based on the results obtained, are proposed that allow to bring the power quality factors to the regulatory values. Due to a big investments amount, an implementation of tar-get program is needed to resolve the large-scale issue of enhancing power quality in mains adjacent to traction substations of AC railroads.


2019 ◽  
Vol 77 ◽  
pp. 03007
Author(s):  
Dmitry Prokhorov ◽  
Nikita Pavlov

The work analyzes the effect of low temperatures and other climatic factors on the accident rate and reliability of energy facilities. To represent the causes and analyze the consequences in emergency situations at power plants, descriptions of accidents that occurred in the Sakha Republic were collected and considered. For the analysis, examples are chosen that contain more complete descriptions of the various interrelated causes and consequences of accidents. It was revealed that the greatest number of accidents occurs in the period of low temperatures. High accidents in the summer months are also associated with the climatic features of the republic, mainly with accidents in the power supply system: seasonal melting of permafrost, floods, wildfires and in connection with this drop in power transmission lines, overruns and wire breaks due to storm wind and other.


2019 ◽  
Vol 8 (8) ◽  
pp. 316 ◽  
Author(s):  
Michael Zipf ◽  
Samarth Kumar ◽  
Hendrik Scharf ◽  
Christoph Zöphel ◽  
Constantin Dierstein ◽  
...  

The integration of different stakeholders’ perspectives when planning large-scale infrastructure projects such as power transmission lines is becoming increasingly important in the public debate. Partly conflicting interests of stakeholders should be taken into account in order to allow for best possible routing of new lines. Particularly when transmission lines which are bridging large distances are considered, externalities within this complex setting include social, ecological, economical and technical dimensions. An optimal routing of lines may help address different issues, such as public resistance. Models for the investigation of these large-area impacts for optimal route formation often only cover small regions or lack the georeferenced data necessary to quantify different criteria. We develop an open-source approach which allows for transparent and replicable route determination, tracing, and assessment covering the whole of Europe. Therefore, we provide several friction layers with high spatial resolution. Each layer represents a criterion affecting the routing of a power line. Together with the start and end point of a construction project, this allows for creating accumulated cost rasters for various relationships between the weightings of the perspectives which are relevant during line infrastructure routing processes. The present work explains the underlying methods of data collection, processing, and algorithms of data preparation, route generation, and assessment. Subsequently, this approach is verified with two case studies of HVDC transmission lines which are currently in the planning stages. All processed datasets and applied scripts described in this paper are open-access and made publicly available. Hence, this should support the current project routing debate by providing more transparency and by improving stakeholder involvement.


2021 ◽  
Vol 289 ◽  
pp. 01013
Author(s):  
Vitaly Novokreshchenov

With series compensation of the line reactance, the problem of its protection against overcurrents arises regarding relay protection. The greater the degree of compensation, the greater the problem. When compensating for more than 50% of the reactance of the line, the protection of power transmission lines becomes practically impossible due to the failure or false operation of all existing kinds and types of protection [1, 2]. Therefore, as for now, the compensation of the line reactance usually is no more than 50% [3, 4], which does not allow to reveal the full potential of the line in terms of its transmission capacity. The goal of this research was to study the processes occurring in emergency modes on power lines equipped with a series capacitor bank, the understanding of which would help to produce algorithms that can protect power lines with SCB with a degree of the longitudinal resistance compensation of the line of more than 50%.


Sign in / Sign up

Export Citation Format

Share Document