scholarly journals THE ANALYSIS OF LANDS IN SECURITY ZONES OF HIGH-VOLTAGE POWER LINES (POWER LINE) ON THE EXAMPLE OF THE FERGANA REGION

Author(s):  
Abdullayev Ibrohim Numanovich ◽  
Marupov Azizxon Abbosxonovich

Practice shows that the lack or late receipt of information with special conditions for the use of territories often has a negative impact not only on the budget and time frame for the construction of a real estate facility, but also on the fate of the built facility in general. The protection areas of underground and above-ground engineering communications play an important role for the future in land use. And also, when using these lands for agricultural needs, with the correct organization of cadastral relations represents the relevance of the issue under study. In the present, as an example, a section of high-voltage power transmission lines (power lines) of 1 km length is presented. KEY WORDS: security zones, land plot, information about zones, high-voltage zones, power transmission lines, pipelines, gas pipelines, bonality score, engineering networks, construction of buildings and structures.

Author(s):  
V.P. Sivokon ◽  
◽  

Within the framework of the national project “Digital economy of the Russian Federation” the Ministry of energy of the Russian Federation is implementing the departmental project “unified technical policy – relia-bility of power supply”. The main objectives of the departmental project are aimed at implementing risk-based management, improving the level of reliability of energy supply to consumers. One of the risk factors for pow-er supply systems is a natural phenomenon caused by ionospheric-magnetospheric connections – geomagnetic-induced currents. The proposed method for assessing these risks is based on the registration of higher harmon-ics in high-voltage power lines, which makes it possible to improve the accuracy of diagnostics of geomagnet-ic-induced currents by reducing the influence of the network's own harmonics. The choice of the optimal even harmonic number for diagnostics is theoretically shown and experimentally confirmed. A contactless method for obtaining information about variations of higher harmonic components in high-voltage power lines is pro-posed and tested. The degree of the 6th harmonics correlation in 220 kV power transmission lines of Mutnovskaya Geothermal Power Plant with the Earth's magnetic field variations obtained at the observatory “Paratunka” (Paratunka village, Kamchatsky Krai) was experimentally investigated.


2014 ◽  
Vol 17 (1) ◽  
pp. 16-29
Author(s):  
Long Van Hoang Vo ◽  
Tu Phan Vu

The population explosion and development of the national economy are two main causes of increasing the power demand. Besides, the Distributed Generations (DG) connected with the power transmission and distribution networks increase the transmission power on the existing lines as well. In general, for solving this problem, power utilities have to install some new power transmission and distribution lines. However, in some cases, the install of new power lines can strongly effect to the environment and even the economic efficiency is low. Nowadays, the problem considered by scientists, researchers and engineers is how to use efficiently the existing power transmission and distribution lines through calculating and monitoring their current carrying capacity at higher operation temperature, and thus the optimal use of these existing lines will bring higher efficiency to power companies. Generally, the current carrying capacity of power lines is computed based on the calculation of their thermal fields illustrated in IEEE [1], IEC [2] and CIGRE [3]. In this paper, we present the new approach that is the application of the finite element method based on Comsol Multiphysics software for modeling thermal fields of overhead power transmission lines. In particular, we investigate the influence of environmental conditions, such as wind velocity, wind direction, temperature and radiation coefficient on the typical line of ACSR. The comparisons between our numerical solutions and those obtained from IEEE have been shown the high accuracy and applicability of finite element method to compute thermal fields of overhead power transmission lines.


2020 ◽  
Vol 17 ◽  
pp. 105-108
Author(s):  
Marko Kaasik ◽  
Sander Mirme

Abstract. The electric power that can be transmitted via high-voltage transmission lines is limited by the Joule heating of the conductors. In the case of coastal wind farms, the wind that produces power simultaneously contributes to the cooling of high-voltage overhead conductors. Ideally this would allow for increased power transmission or decreased dimensions and cost of the conductor wires. In this study we investigate how well the wind speed in coastal wind farms is correlated with wind along a 75 km long 330 kW power line towards inland. It is found that correlations between wind speed in coastal wind farms at turbine height and conductor-level (10 m) are remarkably lower (R=0.39–0.64) than between wind farms at distances up to 100 km from each other (R=0.76–0.97). Dense mixed forest surrounding the power line reduces both local wind speed and the correlations with coastal higher-level wind, thus making the cooling effect less reliable.


2020 ◽  
Vol 23 (2) ◽  
pp. 16-19
Author(s):  
G. SHEINA ◽  

This paper investigates a mathematical model of one elements of the power supply system - power transmission lines. The type of models depends on the initial simplifications, which in turn are determined by the complexity of the physics of processes. The task of improving the accuracy of modeling of emergency processes in the power system is due to the significant complexity of modern power systems and their equipment, high-speed relay protection, automation of emergency management and the introduction of higher-speed switching equipment. One of the reasons for a significant number of serious emergencies in the system is the lack of complete and reliable information for modeling modes in the design and operation of power systems. The development of a mathematical model of a three-phase power line, which provides adequate reflection of both normal and emergency processes, is relevant. The advanced mathematical model of power transmission lines allows to investigate various operational modes of electric networks. The improved mathematical model of the power transmission line reflects all the features of physical processes at state modes and transient process and provides sufficient accuracy of the results. The type of mathematical model of power transmission lines depends on the accepted simplifications, depending on the task of research. The purpose of this work is to analyze the mathematical model of the power transmission line to study the modes of operation of the power supply system, with the possibility of its application to take into account all the design features of overhead and cable power lines. The mathematical model of the power line for the study of the modes of operation of the power supply system is analyzed. It is used to take into account the design features of overhead and cable power lines, skin effect.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 162 ◽  
Author(s):  
Xiang Li ◽  
Yuying Lin

The rapid growth of the network of high-voltage power transmission lines (HVPTLs) is inevitably covering more forest domains. However, no direct quantitative measurements have been reported of the effects of HVPTLs on vegetation growth. Thus, the impacts of HVPTLs on vegetation growth are uncertain. Taking one of the areas with the highest forest coverage in China as an example, the upper reaches of the Minjiang River in Fujian Province, we quantitatively analyzed the effect of HVPTLs on forest landscape fragmentation and vegetation growth using Landsat imageries and forest inventory datasets. The results revealed that 0.9% of the forests became edge habitats assuming a 150 m depth-of-edge-influence by HVPTLs, and the forest plantations were the most exposed to HVPTLs among all the forest landscape types. Habitat fragmentation was the main consequence of HVPTL installation, which can be reduced by an increase in the patch density and a decrease in the mean patch area (MA), largest patch index (LPI), and effective mesh size (MESH). In all the landscape types, the forest plantation and the non-forest land were most affected by HVPTLs, with the LPI values decreasing by 44.1 and 20.8%, respectively. The values of MESH decreased by 44.2 and 32.2%, respectively. We found an obvious increasing trend in the values of the normalized difference vegetation index (NDVI) in 2016 and NDVI growth during the period of 2007 to 2016 with an increase in the distance from HVPTL. The turning points of stability were 60 to 90 meters for HVPTL corridors and 90 to 150 meters for HVPTL pylons, which indicates that the pylons have a much greater impact on NDVI and its growth than the lines. Our research provides valuable suggestions for vegetation protection, restoration, and wildfire management after the construction of HVPTLs.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3014 ◽  
Author(s):  
Bushra Jalil ◽  
Giuseppe Riccardo Leone ◽  
Massimo Martinelli ◽  
Davide Moroni ◽  
Maria Antonietta Pascali ◽  
...  

The power transmission lines are the link between power plants and the points of consumption, through substations. Most importantly, the assessment of damaged aerial power lines and rusted conductors is of extreme importance for public safety; hence, power lines and associated components must be periodically inspected to ensure a continuous supply and to identify any fault and defect. To achieve these objectives, recently, Unmanned Aerial Vehicles (UAVs) have been widely used; in fact, they provide a safe way to bring sensors close to the power transmission lines and their associated components without halting the equipment during the inspection, and reducing operational cost and risk. In this work, a drone, equipped with multi-modal sensors, captures images in the visible and infrared domain and transmits them to the ground station. We used state-of-the-art computer vision methods to highlight expected faults (i.e., hot spots) or damaged components of the electrical infrastructure (i.e., damaged insulators). Infrared imaging, which is invariant to large scale and illumination changes in the real operating environment, supported the identification of faults in power transmission lines; while a neural network is adapted and trained to detect and classify insulators from an optical video stream. We demonstrate our approach on data captured by a drone in Parma, Italy.


Sign in / Sign up

Export Citation Format

Share Document