scholarly journals Benchmarking Particle Filter Algorithms for Efficient Velodyne-Based Vehicle Localization

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3155 ◽  
Author(s):  
Jose Luis Blanco-Claraco ◽  
Francisco Mañas-Alvarez ◽  
Jose Luis Torres-Moreno ◽  
Francisco Rodriguez ◽  
Antonio Gimenez-Fernandez

Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured by these sensors, we perform a systematic statistical analysis of how many points are actually required to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter settings required to ensure convergence. Our findings include that a decimation factor between 100 and 200 on incoming point clouds provides a large savings in computational cost with a negligible loss in localization accuracy for a VLP-16 scanner. Furthermore, an initial density of ∼2 particles/m 2 is required to achieve 100% convergence success for large-scale (∼100,000 m 2 ), outdoor global localization without any additional hint from GPS or magnetic field sensors. All implementations have been released as open-source software.

2020 ◽  
Vol 5 (7) ◽  
pp. 55 ◽  
Author(s):  
Luigi Barazzetti ◽  
Mattia Previtali ◽  
Marco Scaioni

Building Information Modeling (BIM) has a crucial role in smart road applications, not only limited to the design and construction stages, but also to traffic monitoring, autonomous vehicle navigation, road condition assessment, and real-time data delivery to drivers, among others. Point clouds collected through LiDAR are a powerful solution to capture as-built conditions, notwithstanding the lack of commercial tools able to automatically reconstruct road geometry in a BIM environment. This paper illustrates a two-step procedure in which roads are automatically detected and classified, providing GIS layers with basic road geometry that are turned into parametric BIM objects. The proposed system is an integrated BIM-GIS with a structure based on multiple proposals, in which a single project file can handle different versions of the model using a variable level of detail. The model is also refined by adding parametric elements for buildings and vegetation. Input data for the integrated BIM-GIS can also be existing cartographic layers or outputs generated with algorithms able to handle LiDAR data. This makes the generation of the BIM-GIS more flexible and not limited to the use of specific algorithms for point cloud processing.


2019 ◽  
Vol 39 (2-3) ◽  
pp. 339-355 ◽  
Author(s):  
Renaud Dubé ◽  
Andrei Cramariuc ◽  
Daniel Dugas ◽  
Hannes Sommer ◽  
Marcin Dymczyk ◽  
...  

Precisely estimating a robot’s pose in a prior, global map is a fundamental capability for mobile robotics, e.g., autonomous driving or exploration in disaster zones. This task, however, remains challenging in unstructured, dynamic environments, where local features are not discriminative enough and global scene descriptors only provide coarse information. We therefore present SegMap: a map representation solution for localization and mapping based on the extraction of segments in 3D point clouds. Working at the level of segments offers increased invariance to view-point and local structural changes, and facilitates real-time processing of large-scale 3D data. SegMap exploits a single compact data-driven descriptor for performing multiple tasks: global localization, 3D dense map reconstruction, and semantic information extraction. The performance of SegMap is evaluated in multiple urban driving and search and rescue experiments. We show that the learned SegMap descriptor has superior segment retrieval capabilities, compared with state-of-the-art handcrafted descriptors. As a consequence, we achieve a higher localization accuracy and a 6% increase in recall over state-of-the-art handcrafted descriptors. These segment-based localizations allow us to reduce the open-loop odometry drift by up to 50%. SegMap is open-source available along with easy to run demonstrations.


2020 ◽  
Vol 9 (11) ◽  
pp. 656
Author(s):  
Muhammad Hamid Chaudhry ◽  
Anuar Ahmad ◽  
Qudsia Gulzar

Unmanned Aerial Vehicles (UAVs) as a surveying tool are mainly characterized by a large amount of data and high computational cost. This research investigates the use of a small amount of data with less computational cost for more accurate three-dimensional (3D) photogrammetric products by manipulating UAV surveying parameters such as flight lines pattern and image overlap percentages. Sixteen photogrammetric projects with perpendicular flight plans and a variation of 55% to 85% side and forward overlap were processed in Pix4DMapper. For UAV data georeferencing and accuracy assessment, 10 Ground Control Points (GCPs) and 18 Check Points (CPs) were used. Comparative analysis was done by incorporating the median of tie points, the number of 3D point cloud, horizontal/vertical Root Mean Square Error (RMSE), and large-scale topographic variations. The results show that an increased forward overlap also increases the median of the tie points, and an increase in both side and forward overlap results in the increased number of point clouds. The horizontal accuracy of 16 projects varies from ±0.13m to ±0.17m whereas the vertical accuracy varies from ± 0.09 m to ± 0.32 m. However, the lowest vertical RMSE value was not for highest overlap percentage. The tradeoff among UAV surveying parameters can result in high accuracy products with less computational cost.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 899 ◽  
Author(s):  
Veli Ilci ◽  
Charles Toth

Recent developments in sensor technologies such as Global Navigation Satellite Systems (GNSS), Inertial Measurement Unit (IMU), Light Detection and Ranging (LiDAR), radar, and camera have led to emerging state-of-the-art autonomous systems, such as driverless vehicles or UAS (Unmanned Airborne Systems) swarms. These technologies necessitate the use of accurate object space information about the physical environment around the platform. This information can be generally provided by the suitable selection of the sensors, including sensor types and capabilities, the number of sensors, and their spatial arrangement. Since all these sensor technologies have different error sources and characteristics, rigorous sensor modeling is needed to eliminate/mitigate errors to obtain an accurate, reliable, and robust integrated solution. Mobile mapping systems are very similar to autonomous vehicles in terms of being able to reconstruct the environment around the platforms. However, they differ a lot in operations and objectives. Mobile mapping vehicles use professional grade sensors, such as geodetic grade GNSS, tactical grade IMU, mobile LiDAR, and metric cameras, and the solution is created in post-processing. In contrast, autonomous vehicles use simple/inexpensive sensors, require real-time operations, and are primarily interested in identifying and tracking moving objects. In this study, the main objective was to assess the performance potential of autonomous vehicle sensor systems to obtain high-definition maps based on only using Velodyne sensor data for creating accurate point clouds. In other words, no other sensor data were considered in this investigation. The results have confirmed that cm-level accuracy can be achieved.


2018 ◽  
Vol 10 (12) ◽  
pp. 2007 ◽  
Author(s):  
Matteo Ziliani ◽  
Stephen Parkes ◽  
Ibrahim Hoteit ◽  
Matthew McCabe

Monitoring the development of vegetation height through time provides a key indicator of crop health and overall condition. Traditional manual approaches for monitoring crop height are generally time consuming, labor intensive and impractical for large-scale operations. Dynamic crop heights collected through the season allow for the identification of within-field problems at critical stages of the growth cycle, providing a mechanism for remedial action to be taken against end of season yield losses. With advances in unmanned aerial vehicle (UAV) technologies, routine monitoring of height is now feasible at any time throughout the growth cycle. To demonstrate this capability, five digital surface maps (DSM) were reconstructed from high-resolution RGB imagery collected over a field of maize during the course of a single growing season. The UAV retrievals were compared against LiDAR scans for the purpose of evaluating the derived point clouds capacity to capture ground surface variability and spatially variable crop height. A strong correlation was observed between structure-from-motion (SfM) derived heights and pixel-to-pixel comparison against LiDAR scan data for the intra-season bare-ground surface (R2 = 0.77 − 0.99, rRMSE = 0.44% − 0.85%), while there was reasonable agreement between canopy comparisons (R2 = 0.57 − 0.65, rRMSE = 37% − 50%). To examine the effect of resolution on retrieval accuracy and processing time, an evaluation of several ground sampling distances (GSD) was also performed. Our results indicate that a 10 cm resolution retrieval delivers a reliable product that provides a compromise between computational cost and spatial fidelity. Overall, UAV retrievals were able to accurately reproduce the observed spatial variability of crop heights within the maize field through the growing season and provide a valuable source of information with which to inform precision agricultural management in an operational context.


Author(s):  
YUANTAO GU ◽  
YILUN CHEN ◽  
ZHENGWEI JIANG ◽  
KUN TANG

Face tracking has many visual applications such as human-computer interfaces, video communications and surveillance. Color-based particle trackers have been proved robust and versatile for a modest computational cost. In this paper, a probabilistic method for integrating multi-camera information is introduced to track human face 3D-pose variations. The proposed method fuses information coming from several calibrated cameras via one color-based particle filter. The algorithm relies on the following novelties. First, the human head other than face is defined as the target of our algorithm. To distinguish the face region and hair region, a dual-color-ball is utilized to model the human head in 3D space. Second, to enhance the robustness to illumination variety, the Fisher criterion is applied to measure the separability of the face region and the hair region on the color histogram. Consequently, the color distribution template can be adapted at the proper time. Finally, the algorithm is performed based on the distributed framework, therefore the computation is implemented equally by all client processors. To demonstrate the performance of the proposed algorithm, several scenarios of visual tracking are tested in an office environment with three to four calibrated cameras. Experiments show that accurate tracking results are achieved, even in some difficult scenarios, such as the complete occlusion and the temptation of anything with skin color. Furthermore, the additional information of our track results, including the head posture and the face orientation schemes, can be used for further work such as face recognition and eye gaze estimation, which is also explained by elaborated designed experiments.


Sign in / Sign up

Export Citation Format

Share Document