scholarly journals ppb-Level Selective Hydrogen Gas Detection of Pd-Functionalized In2O3-Loaded ZnO Nanofiber Gas Sensors

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4276 ◽  
Author(s):  
Jae-Hyoung Lee ◽  
Jae-Hun Kim ◽  
Jin-Young Kim ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
...  

Pd nanoparticle-functionalized, xIn2O3 (x = 0.05, 0.1, and 0.15)-loaded ZnO nanofibers were synthesized by an electrospinning and ultraviolet (UV) irradiation method and assessed for their hydrogen gas sensing properties. Morphological and chemical analyses revealed the desired morphology and chemical composition of the synthesized nanofibers. The optimal gas sensor namely Pd-functionalized, 0.1In2O3-loaded ZnO nanofibers showed a very strong response to 172–50 ppb hydrogen gas at 350 °C, which is regarded as the optimal sensing temperature. Furthermore, the gas sensors showed excellent selectivity to hydrogen gas due to the much lower response to CO and NO2 gases. The enhanced gas response was attributed to the excellent catalytic activity of Pd to hydrogen gas, and the formation of Pd/ZnO and In2O3/ZnO heterojunctions, ZnO–ZnO homojunction, as well as the formation of PdHx. Overall, highly sensitive and selective hydrogen gas sensors can be produced based on a simple methodology using a synergistic effect from Pd functionalization and In2O3 loading in ZnO nanofibers.

2019 ◽  
Vol 806 ◽  
pp. 1052-1059 ◽  
Author(s):  
Zhong Li ◽  
ZhengJun Yao ◽  
Azhar Ali Haidry ◽  
Tomas Plecenik ◽  
Branislav Grancic ◽  
...  

2016 ◽  
Vol 168 ◽  
pp. 321-324
Author(s):  
Aled R. Lewis ◽  
Josef Náhlík ◽  
Daniel R. Jones ◽  
Thierry G.G. Maffeis

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 902 ◽  
Author(s):  
Jae-Hyoung Lee ◽  
Jin-Young Kim ◽  
Ali Mirzaei ◽  
Hyoun Kim ◽  
Sang Kim

Metal oxide p-n heterojunction nanofibers (NFs) are among the most promising approaches to enhancing the efficiency of gas sensors. In this paper, we report the preparation of a series of p-NiO-loaded n-ZnO NFs, namely (1−x)ZnO-xNiO (x = 0.03, 0.05, 0.7, 0.1, and 0.15 wt%), for hydrogen gas sensing experiments. Samples were prepared through the electrospinning technique followed by a calcination process. The sensing experiments showed that the sample with 0.05 wt% NiO loading resulted in the highest sensing performance at an optimal sensing temperature of 200 °C. The sensing mechanism is discussed in detail and contributions of the p-n heterojunctions, metallization of ZnO and catalytic effect of NiO on the sensing enhancements of an optimized gas sensor are analyzed. This study demonstrates the possibility of fabricating high-performance H2 sensors through the optimization of p-type metal oxide loading on the surfaces of n-type metal oxides.


2015 ◽  
Vol 39 (10) ◽  
pp. 8044-8054 ◽  
Author(s):  
Reinaldo David Martínez-Orozco ◽  
René Antaño-López ◽  
Vicente Rodríguez-González

Palladium–graphene nanostructures were synthesized by the hydrothermal-microwave exfoliation method and employed as active layers for hydrogen gas detection.


Author(s):  
Jae-Hyoung Lee ◽  
Jin-Young Kim ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
Sang Sub Kim

Metal oxide p-n heterojunction nanofibers (NFs) are among the most promising approaches to enhancing the efficiency of gas sensors. In this paper, we report the preparation of a series of p-NiO-loaded n-ZnO NFs, namely (1 − x) ZnO-xNiO (x = 0.03, 0.05, and 0.1 wt%), for hydrogen gas sensing experiments. Samples were prepared through the electrospinning technique followed by a calcination process. The sensing experiments showed that the sample with 0.05 wt% NiO loading resulted in the highest sensing performance at an optimal sensing temperature of 200 °C. The sensing mechanism is discussed in detail and contributions of the p-n heterojunctions, metallization of ZnO and catalytic effect of NiO on the sensing enhancements of an optimized gas sensor are analyzed. This study demonstrates the possibility of fabricating high-performance H2 sensors through the optimization of p-type metal oxide loading on the surfaces of n-type metal oxides.


2006 ◽  
Vol 113 (2) ◽  
pp. 797-804 ◽  
Author(s):  
M. Ali ◽  
V. Cimalla ◽  
V. Lebedev ◽  
H. Romanus ◽  
V. Tilak ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 1199-1202 ◽  
Author(s):  
Philip G. Neudeck ◽  
David J. Spry ◽  
Andrew J. Trunek ◽  
Laura J. Evans ◽  
Liang Yu Chen ◽  
...  

This paper reports on initial results from the first device tested of a “second generation” Pt-SiC Schottky diode hydrogen gas sensor that: 1) resides on the top of atomically flat 4H-SiC webbed cantilevers, 2) has integrated heater resistor, and 3) is bonded and packaged. With proper selection of heater resistor and sensor diode biases, rapid detection of H2 down to concentrations of 20 ppm was achieved. A stable sensor current gain of 125 ± 11 standard deviation was demonstrated during 250 hours of cyclic test exposures to 0.5% H2 and N2/air.


Sign in / Sign up

Export Citation Format

Share Document