Congestion Prediction System With Artificial Neural Networks

Author(s):  
Fatma Gumus ◽  
Derya Yiltas-Kaplan

Software Defined Network (SDN) is a programmable network architecture that provides innovative solutions to the problems of the traditional networks. Congestion control is still an uncharted territory for this technology. In this work, a congestion prediction scheme has been developed by using neural networks. Minimum Redundancy Maximum Relevance (mRMR) feature selection algorithm was performed on the data collected from the OMNET++ simulation. The novelty of this study also covers the implementation of mRMR in an SDN congestion prediction problem. After evaluating the relevance scores, two highest ranking features were used. On the learning stage Nonlinear Autoregressive Exogenous Neural Network (NARX), Nonlinear Autoregressive Neural Network, and Nonlinear Feedforward Neural Network algorithms were executed. These algorithms had not been used before in SDNs according to the best of the authors knowledge. The experiments represented that NARX was the best prediction algorithm. This machine learning approach can be easily integrated to different topologies and application areas.

Author(s):  
Andrew Lishchytovych ◽  
Volodymyr Pavlenko

The object of this study is to analyse the effectiveness of document ran­ king algorithms in search engines that use artificial neural networks to match the texts. The purpose of the study was to inspect a neural network model of text document ran­ king that uses clustering, factor analysis, and multi-layered network architecture. The work of neural network algorithms was compared with the standard statistical search algorithm OkapiBM25. The result of the study is to evaluate the effectiveness of the use of particular models and to recommend model selection for specific datasets.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


2021 ◽  
Vol 11 (4) ◽  
pp. 1829
Author(s):  
Davide Grande ◽  
Catherine A. Harris ◽  
Giles Thomas ◽  
Enrico Anderlini

Recurrent Neural Networks (RNNs) are increasingly being used for model identification, forecasting and control. When identifying physical models with unknown mathematical knowledge of the system, Nonlinear AutoRegressive models with eXogenous inputs (NARX) or Nonlinear AutoRegressive Moving-Average models with eXogenous inputs (NARMAX) methods are typically used. In the context of data-driven control, machine learning algorithms are proven to have comparable performances to advanced control techniques, but lack the properties of the traditional stability theory. This paper illustrates a method to prove a posteriori the stability of a generic neural network, showing its application to the state-of-the-art RNN architecture. The presented method relies on identifying the poles associated with the network designed starting from the input/output data. Providing a framework to guarantee the stability of any neural network architecture combined with the generalisability properties and applicability to different fields can significantly broaden their use in dynamic systems modelling and control.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-13
Author(s):  
Lumin Yang ◽  
Jiajie Zhuang ◽  
Hongbo Fu ◽  
Xiangzhi Wei ◽  
Kun Zhou ◽  
...  

We introduce SketchGNN , a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph with nodes representing the sampled points along input strokes and edges encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.


2020 ◽  
Vol 39 (4) ◽  
pp. 5521-5534
Author(s):  
Ying Liu ◽  
Zhongqi Fan ◽  
Hongliang Qi

By establishing the evaluation system of emergency management capability for coal mine enterprises, we can identify the problems and shortcomings in coal mine emergency management, improve and improve its emergency management capability for coal mine emergencies. In this paper, the authors analyze the dynamic statistical evaluation of safety emergency management in coal enterprises based on neural network algorithms. Neural networks can form any form of topological structure through neurons, so they can directly simulate fuzzy reasoning in structure, that is to say, the equivalent structure of neural networks and fuzzy systems can be formed. This paper constructs the index system based on accident causes, and verifies the scientific rationality of the system. On this basis, according to the specific situation of coal mine emergency management, we design the evaluation criteria of coal mine emergency management capability evaluation index. Because coal mine accidents have the characteristics of complexity, variability and sudden dynamic, it is necessary to adjust and improve the accidents dynamically at any time. The model combines qualitative and quantitative indicators, and can make an overall evaluation of coal mine emergency management capability. It has the characteristics of clear results and strong fitting of simulation results.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2016 ◽  
Vol 807 ◽  
pp. 155-166 ◽  
Author(s):  
Julia Ling ◽  
Andrew Kurzawski ◽  
Jeremy Templeton

There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.


2005 ◽  
Vol 128 (4) ◽  
pp. 773-782 ◽  
Author(s):  
H. S. Tan

The conventional approach to neural network-based aircraft engine fault diagnostics has been mainly via multilayer feed-forward systems with sigmoidal hidden neurons trained by back propagation as well as radial basis function networks. In this paper, we explore two novel approaches to the fault-classification problem using (i) Fourier neural networks, which synthesizes the approximation capability of multidimensional Fourier transforms and gradient-descent learning, and (ii) a class of generalized single hidden layer networks (GSLN), which self-structures via Gram-Schmidt orthonormalization. Using a simulation program for the F404 engine, we generate steady-state engine parameters corresponding to a set of combined two-module deficiencies and require various neural networks to classify the multiple faults. We show that, compared to the conventional network architecture, the Fourier neural network exhibits stronger noise robustness and the GSLNs converge at a much superior speed.


2012 ◽  
Vol 16 (4) ◽  
pp. 1151-1169 ◽  
Author(s):  
A. El-Shafie ◽  
A. Noureldin ◽  
M. Taha ◽  
A. Hussain ◽  
M. Mukhlisin

Abstract. Rainfall is considered as one of the major components of the hydrological process; it takes significant part in evaluating drought and flooding events. Therefore, it is important to have an accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting tasks as multi-layer perceptron neural networks (MLP-NN). In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and has a memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series. Two different static neural networks and one dynamic neural network, namely the multi-layer perceptron neural network (MLP-NN), radial basis function neural network (RBFNN) and input delay neural network (IDNN), respectively, have been examined in this study. Those models had been developed for the two time horizons for monthly and weekly rainfall forecasting at Klang River, Malaysia. Data collected over 12 yr (1997–2008) on a weekly basis and 22 yr (1987–2008) on a monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural networks. Results showed that the MLP-NN neural network model is able to follow trends of the actual rainfall, however, not very accurately. RBFNN model achieved better accuracy than the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model was better than that of static network during both training and testing stages, which proves a consistent level of accuracy with seen and unseen data.


Sign in / Sign up

Export Citation Format

Share Document