scholarly journals Stackelberg Game-Based Power Allocation for V2X Communications

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 58
Author(s):  
Erqing Zhang ◽  
Sixing Yin ◽  
Huisheng Ma

Ultra-reliable low-latency communication (URLLC) is one of the three usage scenarios anticipated for 5G, which plays an important role in advanced applications of vehicle-to-everything (V2X) communications. In this paper, the Stackelberg game-based power allocation problem was investigated in V2X communications underlaying cellular networks. Assuming that the macro-cellular base station (MBS) sets the interference prices to protect itself from the V2X users (VUEs), the Stackelberg game was adopted to analyze the interaction between MBS and VUEs, where the former acts as a leader and the latter act as followers. For MBS, we aimed at maximizing its utility from interference revenue while considering the cost of interference. Meanwhile, the VUEs aimed at maximizing their utilities per unit power consumption. We analyzed the Stackelberg model and obtained the optimal prices for MBS and optimal transmit powers for VUEs. Simulation results demonstrated the superiority of the proposed Stackelberg game-based power allocation scheme in comparison with the traditional power allocation strategy. Meanwhile, the proposed scheme achieved a better trade-off between economic profit and power consumption.

2018 ◽  
Vol 27 (12) ◽  
pp. 1850195
Author(s):  
P. Mangayarkarasi ◽  
J. Raja

Energy-efficient and reliable data transmission is a challenging task in wireless relay networks (WRNs). Energy efficiency in cellular networks has received significant attention because of the present need for reduced energy consumption, thereby maintaining the profitability of networks, which in turn makes these networks “greener”. The urban cell topography needs more energy to cover the total area of the cell. The base station does not cover the entire area in a given topography and adding more number of base stations is a cost prohibitive one. Energy-efficient relay placement model which calculates the maximum cell coverage is proposed in this work that covers all sectors and also an energy-efficient incremental redundancy-hybrid automatic repeat request (IR-HARQ) power allocation scheme to improve the reliability of the network by improving the overall network throughput is proposed. An IR-HARQ power allocation method maximizes the average incremental mutual information at each round, and its throughput quickly converges to the ergodic channel capacity as the number of retransmissions increases. Simulation results show that the proposed IR-HARQ power allocation achieves full channel capacity with average transmission delay and maintains good throughput under less power consumption. Also the impact of relaying performance on node distances between relay station and base station as well as between user and relay station and relay height for line of sight conditions are analyzed using full decode and forward (FDF) and partial decode and forward (PDF) relaying schemes. Compared to FDF scheme, PDF scheme provides better performance and allows more freedom in the relay placement for an increase in cell coverage.


2019 ◽  
Vol 8 (2) ◽  
pp. 6527-6534

Massive Multi-Input and Multi-Output (MIMO) antenna system potentially provides a promising solution to improve energy efficiency (EE) for 5G wireless systems. The aim of this paper is to enhance EE and its limiting factors are explored. The maximum EE of 48 Mbit/Joule was achieved with 15 user terminal (UT)s. This problem is related to the uplink spectral efficiency with upper bound for future wireless networks. The maximal EE is obtained by optimizing a number of base station (BS) antennas, pilot reuse factor, and BSs density. We presented a power consumption model by deriving Shannon capacity calculations with closed-form expressions. The simulation result highlights the EE maximization with optimizing variables of circuit power consumption, hardware impairments, and path-loss exponent. Small cells achieve high EE and saturate to a constant value with BSs density. The MRC scheme achieves maximum EE of 36 Mbit/Joule with 12 UTs. The simulation results show that peak EE is obtained by deploying massive BS antennas, where the interference and pilot contamination are mitigated by coherent processing. The simulation results were implemented by using MATLAB 2018b.


2015 ◽  
Vol 10 (1) ◽  
pp. 138-146
Author(s):  
Hu Guolong ◽  
Jia Zhenghong ◽  
Qin Xizhong ◽  
Niu Hongmei ◽  
Jiao Huadong ◽  
...  

Author(s):  
Prapassorn Phaiwitthayaphorn ◽  
Kazuo Mori ◽  
Hideo Kobayashi ◽  
Pisit Boonsrimuang

The mobile traffic continuously grows at a rapid rate driven by the widespread use of wireless devices. Along with that, the demands for higher data rate and better coverage lead to increase in power consumption and operating cost of network infrastructure. The concept of heterogeneous networks (HetNets) has been proposed as a promising approach to provide higher coverage and capacity for cellular networks. HetNet is an advanced network consisting of multiple kinds of base stations, i.e., macro base station (MBS), and small base station (SBS). The overlay of many SBSs into the MBS coverage can provide higher network capacity and better coverage in cellular networks. However, the dense deployment of SBSs would cause an increase in the power consumption, leading to a decrease in the energy efficiency in downlink cellular networks. Another technique to improve energy efficiency while reducing power consumption in the network is to introduce sleep control for SBSs. This paper proposes cell throughput based sleep control which the cell capacity ratio for the SBSs is employed as decision criteria to put the SBSs into a sleep state. The simulation results for downlink communications demonstrate that the proposed scheme improves the energy efficiency, compared with the conventional scheme.


2021 ◽  
Author(s):  
Ajmery Sultana

Device-to-device (D2D) communication is developed as a new paradigm to enhance net- work performance according to LTE and WiMAX advanced standards. On the other hand, cognitive radio (CR) approach provides efficient spectral usage using intelligent wireless nodes. In this thesis, a number of optimal resource allocation strategies for D2D communi- cation networks are investigated using the CR approach. As a first step, the CR approach in radio access networks is introduced. In the second step, the taxonomy of the RA process in CRNs is provided. For radio resource allocation (RRA), the most crucial task is to associate a user with a particular serving base station, to assign the channel and to allocate the power efficiently. In this thesis, a subcarrier assignment scheme and a power allocation algorithm using geometric water-filling (GWF) is presented for orthogonal frequency division multiplexing (OFDM) based CRNs. This algorithm is proved to maximize the sum rate of secondary users by allocating power more efficiently. Then, the RA problem is studied to jointly employ CR technology and D2D communication in cellular networks in terms of spectral efficiency (SE) and energy efficiency (EE). In the first case, in terms of SE, a two-stage approach is considered to allocate the radio resource efficiently where a new adaptive subcarrier allocation (ASA) scheme is designed first and then a novel power allocation (PA) scheme is developed utilizing proven GWF approach that can compute exact solution with less computation. In the second case, in terms of EE, the power allocation problem of cellular networks that co-exist with D2D communication considering both underlay and overlay CR approaches are investigated. A proven power allocation algorithm based on GWF approach is utilized to solve the EE maximization problem which results in an “exact" and “low complexity" solution.


2012 ◽  
Vol 3 (2) ◽  
pp. 238-241
Author(s):  
Kriti Saraswat ◽  
Ajit Kumar Shrivastava ◽  
Amit Saxena

Dense deployment of cellular networks is leading to scarcity of communication bandwidth or what we call as channel. If compared to its wired counterparts, wireless cellular network have limited number of channels available, which gives rise to problem of efficient channel allocation. Here, in this piece of work, the main objective is to put an effort to improve existing channel allocation scheme. In earlier existing hybrid allocation scheme, the base station notifies about the hot-spots to the Mobile Switching Centre (MSC) and if MSC has available channels in its central pool then it satisfies the request. Now, the novelty of this work starts where central pool gets exhausted and request of channels from base station (BS) still arrives and is served by returning the unused channels by different cells back to MSC on its request. The simulation of this approach is expounded and evaluated over OMNeT++ in a scenario with fixed channel allocation and hybrid approach by varying the proportion of dynamic channels to total number of channels available and the effectiveness is evaluated in terms of Call blocked and Call dropped versus System load.


Sign in / Sign up

Export Citation Format

Share Document