scholarly journals Wearable Piezoelectric-Based System for Continuous Beat-to-Beat Blood Pressure Measurement

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 851 ◽  
Author(s):  
Ting-Wei Wang ◽  
Shien-Fong Lin

Non-invasive continuous blood pressure measurement is an emerging issue that potentially can be applied to cardiovascular disease monitoring and prediction. Recently, many groups have proposed the pulse transition time (PTT) method to estimate blood pressure for long-term monitoring. However, the PTT-based methods for blood pressure estimation are limited by non-specific estimation models and require multiple calibrations. This study aims to develop a low-cost wearable piezoelectric-based system for continuous beat-to-beat blood pressure measurement. The pressure change in the radial artery was extracted by systolic and diastolic feature points in pressure pulse wave (PPW) and the pressure sensitivity of the sensor. The proposed system showed a reliable accuracy of systolic blood pressure (SBP) (mean absolute error (MAE) ± standard deviation (SD) 1.52 ± 0.30 mmHg) and diastolic blood pressure (DBP, MAE ± SD 1.83 ± 0.50), and its performance agreed with standard criteria of MAE within 5 mmHg and SD within ±8 mmHg. In conclusion, this study successfully developed a low-cost, high-accuracy piezoelectric-based system for continuous beat-to-beat SBP and DBP measurement without multiple calibrations and complex regression analysis. The system is potentially suitable for continuous, long-term blood pressure-monitoring applications.

2012 ◽  
Author(s):  
Kelvin Tan ◽  
Mohd Hafiz Fazalul Rahiman ◽  
Ruzairi Abdul Rahim ◽  
Muhamad Jaysuman ◽  
Salinda Buyamin

Pengukuran tekanan darah telahpun merupakan sebahagian daripada pemeriksaan klinikal pada zaman perubatan moden ini. Dua daripada kaedah yang sering diaplikasi dalam mengukur tekanan darah secara tidak langsung ialah kaedah auskultatori dan kaedah osilometrik. Namun, kaedah konvensional auskultatori dengan menggunakan tolok tekanan dan stetoskop masih diguna secara meluas oleh doktor. Masalah utama dalam mengaplikasi cara konvensional ini ialah berlakunya ketidaktepatan bacaan akibat daripada kepekaan di kalangan doktor yang berlainan dalam menentukan tekanan darah bagi pesakit mereka. Sebaliknya, penggunaan mesin pengukur tekanan darah elektronik telah memberi penyelesaian bagi mengatasi masalah tersebut, tetapi ia masih tidak mampu menunjukkan keadaan denyutan jantung pesakit. Sebagai langkah untuk mengatasi masalah ini, sistem pengukur tekanan darah tidak langsung berdasarkan mikropengawal (e-BPM) telah direka bentuk dalam kajian ini bagi memberi pengukuran tekanan darah yang lebih mudah dan tepat melalui kaedah osilometrik. Untuk mengukur tekanan darah, tekanan yang di dapati di lengan akan dihantar ke port pengesan tekanan. e–BPM ini direka bagi memaparkan hasil pengukuran bersama-sama dengan isyarat ayunan (di mana ia mewakili keadaan denyupan jantung pesakit) pada skrin komputer. Selain itu, hasil pengukuran juga boleh dicetak bagi tujuan rujukan. Kajian ini, memaparkan hasil simulasi bersama–sama dengan isyarat ayunan, iaitu pendedahan kepada applikasi pengukuran tekanan darah secara tidak langsung. Ia juga boleh memberikan bacaan kadar denyutan dengan tepat. Sebagai tambahan, bagi ukuran tekanan darah, ketepatan sistem tersebut boleh diterima dengan merujuk depada nilai mean yang dihasilkan. Bagaimanapun, terdapat coefficients yang perlu dikaji semula untuk menambahbaik ketepatan dalam menjalankan ukuran tekanan darah. Kata kunci: Tekanan darah; pengesan tekanan Measurements of blood pressure have been part of the basic clinical examination since the earliest days of modern medicine. Two of the most commonly used methods in performing the non–invasive blood pressure measurement are the auscultatory method and the oscillometric method. However, the conventional auscultatory method using sphygmomanometer and stethoscope is still widely used by doctors. The main problem in implementing this conventional method is the inaccuracy in readings due to the different abilities among doctors in sensing their patients’ blood pressure. On the other hand, the usage of oscillometric electronic blood pressure monitors has provided a good solution to the problem but the limitation is that they do not indicate the patient’s heartbeat condition. As a solution, the online micro–controller based non–invasive blood pressure monitoring system (e–BPM) is developed in this study to provide a more convenient and accurate measurement of blood pressure using the principles of the oscillometric method. In performing the blood pressure measurement, the medical hardware delivers the pressure inside arm cuff to the pressure sensor port. The e–BPM is developed to display the measurement results with oscillation signal waveform (which indicates the patient’s heartbeat condition) on the computer screen where the results can be printed out for reference. The simulation results show the oscillation signal waveform, giving a comprehensive exposure in the application of non–invasive blood pressure measurement. The developed e–BPM is accurate in giving the measurement of pulse rate. In addition, for blood pressure measurements, the accuracy of the system is still acceptable by referring to the obtained mean values. However, some applied coefficients should be reviewed in order to improve the accuracy in performing the blood pressure measurement. Key words: Blood pressure; pressure sensor


Author(s):  
Hong Long Pua ◽  
Kok Beng Gan

It is not only a problem for old age anyone. So, blood pressure is the one provides importance information with vital signs about cardiovascular health using oscillometric method. Unfortunately, this method required inflation and following deflation of the cuff. This method only gives instantaneous blood pressure and continuous measurement is not available. It is not available to the patients that required long term monitoring. To overcome this problem, the development of Continuous Non-Invasive Blood Pressure (NIBP) algorithm based on Pulse Transit Time (PTT) using two channel Photoplethysmograph (PPG) is proposed in this study. PPG is a non-invasive device for detecting blood volume changes can be affected by various physiological factors, analysis of the PPG signal can provide sufficient information on the human health condition; more specifically their cardio-vascular related performance. Literatures show that the PTT has linear relationship with blood pressure. Nevertheless, the determination of the model structure, order and real-time implementation to offer a continuous measurement of the PTT still remains challenging tasks in this area. PTT can be as index to monitor cardiovascular disease. In this project, dynamic model based on pulse transit time will be proposed to continuously monitor blood pressure by using PPG signals. Different kind of resolutions in microcontroller combined with PPG sensor will be used as well. MATLAB software is also been applied for PTT calculation based on two PPG sensors. PPG is method for detect blood volume changes with optical source transmitter send from one end and received the signal from another by receiver through body tissue as medium. MATLAB functions as Digital Signal Processing (DSP) for signals received in computer. Linear Regression technique and Fung's algorithm are applied to obtain the best fit line for all the points in order to systolic and diastolic blood pressure measurement. The results showed that the algorithm based on pulse transit time has been developed for the assessment of blood pressure and justify patient’ condition with 86.34% and 88.20% accuracy. Finally, this technique is a simple, user friendly and operator independent PPG system suitable for long term and wearable blood pressure monitor.


2021 ◽  
Author(s):  
Fatemeh Shoeibi ◽  
Esmaeil Najafiaghdam ◽  
Afshin Ebrahimi

Abstract Background and Objective: Hypertension is a serious problem that has become dramatically more common in recent decades. Hypertension can be managed in its early stages by regular monitoring of blood pressure. Blood pressure, as a vital signal, has an essential role in the prediction of many cardiovascular diseases. Therefore, non-invasive, cuff-less, continuous monitoring of blood pressure has special importance in personal health care. Recently, due to the capabilities of PPG sensors in embedding and compacting as a wearable device, application of the PPG signal and its characteristics as a useful facilities for BP measurement have been highlighted. Methods: This study attempts to provide a new indicator of PPG waveforms to help the rapid developments in this research area. The proof of the feasibility of using Poincaré’s section for extracting the profitable features of the PPG signal for BP estimation is one of the key achievements of this paper. Results: The performance of the method was evaluated on 101 subject’s clinical data from the MIMIC II database. The proposed method obtains a mean absolute error of 2.1 mmHg for systolic pressure and 1.4 mmHg for diastolic pressure prediction. Also, the results meet the AAMI and BHS standards, which demonstrate the feasibility of Poincaré’s section-based indices in BP estimation. Conclusions: The results confirm the proficiency of this method in the blood pressure estimation and a straightforward way to reduce the computational and hardware complexity, which in turn helps to achieve a real-time wearable BP monitoring system.


2019 ◽  
Vol 2 (3) ◽  
pp. 206-214
Author(s):  
Putri Indes Oktabriani ◽  
Fuad Ughi ◽  
Aulia Arif Iskandar

The continuous blood pressure measurement research is widely known for helpingthe development of ambulatory blood pressure monitoring where it measures blood pressureevery 15 to 30 minutes throughout the day. The cuff is a problem for the patient withAmbulatory Blood Pressure Monitor. It can make a person feel uncomfortable and must staystill when the cuff starts to inflate. It is limiting and disturbing their daily activity when thedevice is starting to measure the blood pressure. Blood pressure measurement without cuff isbeing proposed in this research, called cuff-less blood pressure measurement. It will be based onPhotoplethysmography (PPG) and Electrocardiography (ECG) signal analysis. ECG (Lead 1,Lead 2, and Lead 3) with PPG signal produced from index finger on the left hand are comparedand analyzed. Then the relation of PPG and ECG signal and the optimum location for daily usecan be obtained. The optimum location will be based on the electrode’s position that producedthe optimum ECG lead Signal to measure blood pressure. Based on the result, PPG and ECGsignal have a linear relation with Blood Pressure Measurement and Lead 1 is more stable inproducing the ECG signal. The equation from Lead 1 appeared as one of the optimum equationsfor measuring Systolic Blood Pressure (SBP) or Diastolic Blood Pressure (DBP).


2021 ◽  
Vol 53 (2) ◽  
Author(s):  
Sen Yang ◽  
Yaping Zhang ◽  
Siu-Yeung Cho ◽  
Ricardo Correia ◽  
Stephen P. Morgan

AbstractConventional blood pressure (BP) measurement methods have different drawbacks such as being invasive, cuff-based or requiring manual operations. There is significant interest in the development of non-invasive, cuff-less and continual BP measurement based on physiological measurement. However, in these methods, extracting features from signals is challenging in the presence of noise or signal distortion. When using machine learning, errors in feature extraction result in errors in BP estimation, therefore, this study explores the use of raw signals as a direct input to a deep learning model. To enable comparison with the traditional machine learning models which use features from the photoplethysmogram and electrocardiogram, a hybrid deep learning model that utilises both raw signals and physical characteristics (age, height, weight and gender) is developed. This hybrid model performs best in terms of both diastolic BP (DBP) and systolic BP (SBP) with the mean absolute error being 3.23 ± 4.75 mmHg and 4.43 ± 6.09 mmHg respectively. DBP and SBP meet the Grade A and Grade B performance requirements of the British Hypertension Society respectively.


Sign in / Sign up

Export Citation Format

Share Document