scholarly journals Mining Massive E-Health Data Streams for IoMT Enabled Healthcare Systems

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2131 ◽  
Author(s):  
Affan Ahmed Toor ◽  
Muhammad Usman ◽  
Farah Younas ◽  
Alvis Cheuk M. Fong ◽  
Sajid Ali Khan ◽  
...  

With the increasing popularity of the Internet-of-Medical-Things (IoMT) and smart devices, huge volumes of data streams have been generated. This study aims to address the concept drift, which is a major challenge in the processing of voluminous data streams. Concept drift refers to overtime change in data distribution. It may occur in the medical domain, for example the medical sensors measuring for general healthcare or rehabilitation, which may switch their roles for ICU emergency operations when required. Detecting concept drifts becomes trickier when the class distributions in data are skewed, which is often true for medical sensors e-health data. Reactive Drift Detection Method (RDDM) is an efficient method for detecting long concepts. However, RDDM has a high error rate, and it does not handle class imbalance. We propose an Enhanced Reactive Drift Detection Method (ERDDM), which systematically generates strategies to handle concept drift with class imbalance in data streams. We conducted experiments to compare ERDDM with three contemporary techniques in terms of prediction error, drift detection delay, latency, and ability to handle data imbalance. The experimentation was done in Massive Online Analysis (MOA) on 48 synthetic datasets customized to possess the capabilities of data streams. ERDDM can handle abrupt and gradual drifts and performs better than all benchmarks in almost all experiments.

2021 ◽  
Author(s):  
Priya S ◽  
Annie Uthra

Abstract As the data mining applications are increasing popularly, large volumes of data streams are generated over the period of time. The main problem in data streams is that it exhibits a high degree of class imbalance and distribution of data changes over time. In this paper, Timely Drift Detection and Minority Resampling Technique (TDDMRT) based on K-nearest neighbor and Jaccard similarity is proposed to handle the class imbalance by finding the current ratio of class labels. The Enhanced Early Drift Detection Method (EEDDM) is proposed for detecting the concept drift and the Minority Resampling Method (KNN-JS) determines whether the current data stream should be regarded as imbalance and it resamples the minority instances in the drifting data stream. The K-Nearest Neighbors technique is used to resample the minority classes and the Jaccard similarity measure is established over the resampled data to generate the synthetic data similar to the original data and it is handled by ensemble classifiers. The proposed ensemble based classification model outperforms the existing over sampling and under sampling techniques with accuracy of 98.52%.


2021 ◽  
Vol 20 (01) ◽  
pp. 2150008
Author(s):  
Nalini Nagendhiran ◽  
Lakshmanan Kuppusamy

Mining is a challenging and important task in a non-stationary data stream. It is used in financial sectors, web log analysis, sensor networks, network traffic management, etc. In this environment, data distribution may change overtime and is called concept drift. So, it is necessary to identify the changes and address them to keep the model relevant to the incoming data. Many researchers have used Drift Detection Method (DDM). However, DDM is very sensitive to detect gradual drift where the detection delay is high. In this paper, we propose Adaptive Drift Detection Method (ADDM) which improves the performance of the drift detection mechanism. The ADDM uses a new parameter to detect the gradual drift in order to reduce the detection delay. The proposed method, ADDM, experiments with six synthetic datasets and four real-world datasets. Experimental results confirm that ADDM reduces the drift detection delay and false-positive rate (FPR) while preserving high classification accuracy.


2016 ◽  
Vol 20 (6) ◽  
pp. 1329-1350 ◽  
Author(s):  
Mahdie Dehghan ◽  
Hamid Beigy ◽  
Poorya ZareMoodi

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yange Sun ◽  
Meng Li ◽  
Lei Li ◽  
Han Shao ◽  
Yi Sun

Class imbalance and concept drift are two primary principles that exist concurrently in data stream classification. Although the two issues have drawn enough attention separately, the joint treatment largely remains unexplored. Moreover, the class imbalance issue is further complicated if data streams with concept drift. A novel Cost-Sensitive based Data Stream (CSDS) classification is introduced to overcome the two issues simultaneously. The CSDS considers cost information during the procedures of data preprocessing and classification. During the data preprocessing, a cost-sensitive learning strategy is introduced into the ReliefF algorithm for alleviating the class imbalance at the data level. In the classification process, a cost-sensitive weighting schema is devised to enhance the overall performance of the ensemble. Besides, a change detection mechanism is embedded in our algorithm, which guarantees that an ensemble can capture and react to drift promptly. Experimental results validate that our method can obtain better classification results under different imbalanced concept drifting data stream scenarios.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Sanmin Liu ◽  
Shan Xue ◽  
Fanzhen Liu ◽  
Jieren Cheng ◽  
Xiulai Li ◽  
...  

Data stream classification becomes a promising prediction work with relevance to many practical environments. However, under the environment of concept drift and noise, the research of data stream classification faces lots of challenges. Hence, a new incremental ensemble model is presented for classifying nonstationary data streams with noise. Our approach integrates three strategies: incremental learning to monitor and adapt to concept drift; ensemble learning to improve model stability; and a microclustering procedure that distinguishes drift from noise and predicts the labels of incoming instances via majority vote. Experiments with two synthetic datasets designed to test for both gradual and abrupt drift show that our method provides more accurate classification in nonstationary data streams with noise than the two popular baselines.


Author(s):  
Alessio Bernardo ◽  
Emanuele Della Valle

AbstractThe world is constantly changing, and so are the massive amount of data produced. However, only a few studies deal with online class imbalance learning that combines the challenges of class-imbalanced data streams and concept drift. In this paper, we propose the very fast continuous synthetic minority oversampling technique (VFC-SMOTE). It is a novel meta-strategy to be prepended to any streaming machine learning classification algorithm aiming at oversampling the minority class using a new version of Smote and Borderline-Smote inspired by Data Sketching. We benchmarked VFC-SMOTE pipelines on synthetic and real data streams containing different concept drifts, imbalance levels, and class distributions. We bring statistical evidence that VFC-SMOTE pipelines learn models whose minority class performances are better than state-of-the-art. Moreover, we analyze the time/memory consumption and the concept drift recovery speed.


Author(s):  
D. Himaja ◽  
T. Maruthi Padmaja ◽  
P. Radha Krishna

Learning from data streams with both online class imbalance and concept drift (OCI-CD) is receiving much attention in today's world. Due to this problem, the performance is affected for the current models that learn from both stationary as well as non-stationary environments. In the case of non-stationary environments, due to the imbalance, it is hard to spot the concept drift using conventional drift detection methods that aim at tracking the change detection based on the learner's performance. There is limited work on the combined problem from imbalanced evolving streams both from stationary and non-stationary environments. Here the data may be evolved with complete labels or with only limited labels. This chapter's main emphasis is to provide different methods for the purpose of resolving the issue of class imbalance in emerging streams, which involves changing and unchanging environments with supervised and availability of limited labels.


Sign in / Sign up

Export Citation Format

Share Document