scholarly journals Analysis of the Selection Impact of 2D Detectors on the Accuracy of Image-Based TLS Data Registration of Objects of Cultural Heritage and Interiors of Public Utilities

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3277 ◽  
Author(s):  
Jakub Markiewicz ◽  
Dorota Zawieska

The aim of this article is to present the influence of detector selection for the image-based Terrestrial Laser Scanning (TLS) registration method. The presented results are the extended continuation of investigations presented in the article, ‘The Influence of the Cartographic Transformation of TLS Data on the Quality of the Automatic Registration’. In order to obtain the correct results of the TLS registration process, it is necessary to detect and match the correct tie points, which are evenly distributed across the entire area. Commonly, for TLS data registration manually or semi-manually corresponding points are detected. However, when large, complicated cultural heritage objects are investigated, it is sometimes impossible to place marked control points. The only possibility of resolving this problem is the use of image-based TLS data registration. One of the most important factors that influences the quality and ability to use it correctly, is accurate selection. For this purpose, the authors decided to test three blob detectors ASIFT, SURF, CenSurE, and two point detectors FAST and BRISK. The results indicated that selection depends on two factors: if the time required for data processing is not important, the ASIFT algorithm should be used, which allows for full registration, but if not, a combination of other algorithms with results supervision should be considered.

2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


Author(s):  
K. Lee ◽  
X.W. Xu

The three main methods of digitization can be broadly defined as contact digitization, image-based digitization (photogrammetry), and geometry-based digitization (laser scanning). With the development of the latter two digitization methods, and advanced rendering technologies, virtual displays and museums can now be used widely. (Hung, 2007) Furthermore, recent developments in interactive 3-D computer graphics technology have seen an increased interest in, and use of, 3-D digitization for cultural heritage objects. (Muller-Wittig, Zhu, & Voss, 2007) Technologies for reconstructing or remodeling physical components in 3- D formats are not new in the engineering field, in particular within manufacturing engineering. However, 3-D digitization used for the preservation and archiving of cultural artifacts is relatively recent.


2020 ◽  
Vol 9 (12) ◽  
pp. 759
Author(s):  
Yufu Zang ◽  
Bijun Li ◽  
Xiongwu Xiao ◽  
Jianfeng Zhu ◽  
Fancong Meng

Heritage documentation is implemented by digitally recording historical artifacts for the conservation and protection of these cultural heritage objects. As efficient spatial data acquisition tools, laser scanners have been widely used to collect highly accurate three-dimensional (3D) point clouds without damaging the original structure and the environment. To ensure the integrity and quality of the collected data, field inspection (i.e., on-spot checking the data quality) should be carried out to determine the need for additional measurements (i.e., extra laser scanning for areas with quality issues such as data missing and quality degradation). To facilitate inspection of all collected point clouds, especially checking the quality issues in overlaps between adjacent scans, all scans should be registered together. Thus, a point cloud registration method that is able to register scans fast and robustly is required. To fulfill the aim, this study proposes an efficient probabilistic registration for free-form cultural heritage objects by integrating the proposed principal direction descriptor and curve constraints. We developed a novel shape descriptor based on a local frame of principal directions. Within the frame, its density and distance feature images were generated to describe the shape of the local surface. We then embedded the descriptor into a probabilistic framework to reject ambiguous matches. Spatial curves were integrated as constraints to delimit the solution space. Finally, a multi-view registration was used to refine the position and orientation of each scan for the field inspection. Comprehensive experiments show that the proposed method was able to perform well in terms of rotation error, translation error, robustness, and runtime and outperformed some commonly used approaches.


2021 ◽  
Author(s):  
Abdullah Taha Ahmed Albourae

There are various surveying techniques used in the field of cultural heritage documentation. Close Range Photogrammetry (CRP) and Terrestrial Laser Scanning (TLS) techniques have been widely used in 3D modeling applications. Various research studies integrate these techniques to enhance the quality of the data acquired. The main objective of this research is to assess the accuracy of TLS and CRP. The two methods are applied to two culture heritage case studies, which are located in the historic district in Jeddah, Saudi Arabia. The data obtained from both techniques is compared with data captured using traditional surveying techniques as reference data. The results show that TLS tends to be more accurate than CRP. In the first case study (Bab Makkah), CRP and TLS produced 0.044 m and 0.008 m overall RMS error, respectively; while CRP produced 0.025 m and TLS produced 0.021 m in the second case study (Bab Sharif).


2018 ◽  
Vol 4 (2) ◽  
pp. 470-492
Author(s):  
Hafidz Putra Arifin

The 1945 Constitution contain a ruling obligating the government to protect and preserve all cultural objects, manifestation of the nation’s culture, as cultural heritage.  It is conceded that the political will as reflected in regulations made from time to time on the protection of the nation’s cultural heritage are oriented towards preservation of the Indonesian identity and furthering social welfare. In reality however, cultural heritage objects are vulnerable to looting, willful destruction or lack of care. Using a juridical normative method, the author shall examine existing rules and regulation regarding protection of cultural heritage.  One important finding from this research is that low quality of cultural heritage protection is the result of low societal understanding of the importance of cultural heritage in the making of the national identity.


2021 ◽  
Vol 968 (2) ◽  
pp. 2-10
Author(s):  
H.M. Choker ◽  
M.G. Mustafin

Preservation of cultural heritage is associated with their fixation by performing measurements. They are very effective when we use the terrestrial laser scanning method, as a means of obtaining the most complete and reliable information on the geometry of the object at a particular time. However, the method of laser scanning is not so widely represented in the technical literature, for instance, on Totalstation- or theodolite surveys due to the relatively recent introduction in geodetic practice, especially for the purposes of fixing monuments. There are many questions on application of this technology for the above mentioned aim, they focus on ensuring the required regulatory or its accuracy. The authors discuss a geodetic method for ensuring the precision of laser scanning surveys including the design and estimating the fixed control points’ exactness, as well as the tie ones. The influence of angular and linear measurements over the laser positioning accuracy is shown. The technique is demonstrated, including modeling design schemes and their comparison with actual data. The research results are confined to the world-class cultural heritage site of Baalbek temple complex in Lebanon.


2011 ◽  
Vol 6 ◽  
pp. 89-96 ◽  
Author(s):  
Francesca Duca ◽  
Miriam Cabrelles ◽  
Santiago Navarro ◽  
Ana Elena Segui ◽  
José Luis Lerma

Laser scanning is a high-end technology with possibilities far ahead the well-known civil engineering and industrial applications. The actual geomatic technologies and methodologies for cultural heritage documentation allow the generation of very realistic 3D results used for many scopes like archaeological documentation, digital conservation, 3D repositories, etc. The fast acquisition times of large number of point clouds in 3D opens up the world of capabilities to document and keep alive cultural heritage, moving forward the generation of virtual animated replicas of great value and smooth multimedia dissemination. This paper presents the use of a terrestrial laser sca nning (TLS) as a valuable tool for 3D documentation of large outdoor cultural heritage sculptures such as two of the existing ones inside the “Campus de Vera” of the UPV: “Defensas I” and “Mentoring”. The processing of the TLS data is discussed in detail in order to create photo-realistic digital models. Data acquisition is conducted with a time-of-flight scanner, characterized by its high accuracy, small beam, and ultra-fine scanning. Data processing is performed using Leica Geosystems Cyclone Software for the data registration and 3DReshaper Software for modelling and texturing.  High-resolution images after calibration and orientation of an off-the-shelf digital camera are draped onto the models to achieve right appearance in colour and texture. A discussion on the differences found out when modelling sculptures with different deviation errors will be presented. Processing steps such as normal smoothing and vertices recalculation are found appropriate to achieve continuous meshes around the objects.


2021 ◽  
Author(s):  
Abdullah Taha Ahmed Albourae

There are various surveying techniques used in the field of cultural heritage documentation. Close Range Photogrammetry (CRP) and Terrestrial Laser Scanning (TLS) techniques have been widely used in 3D modeling applications. Various research studies integrate these techniques to enhance the quality of the data acquired. The main objective of this research is to assess the accuracy of TLS and CRP. The two methods are applied to two culture heritage case studies, which are located in the historic district in Jeddah, Saudi Arabia. The data obtained from both techniques is compared with data captured using traditional surveying techniques as reference data. The results show that TLS tends to be more accurate than CRP. In the first case study (Bab Makkah), CRP and TLS produced 0.044 m and 0.008 m overall RMS error, respectively; while CRP produced 0.025 m and TLS produced 0.021 m in the second case study (Bab Sharif).


2010 ◽  
Vol 1 (2) ◽  
pp. 123 ◽  
Author(s):  
José Luis Lerma García ◽  
Miriam Cabrelles López ◽  
Santiago Navarro Tarín ◽  
Sergio Galcerá Ustero

<p>The three-dimensional (3D) documentation by means of laser scanning and photogrammetry eases exhaustive recording, the right lecture of cultural heritage objects and its analysis in order to, on the one hand, adopt appropriate decisions and interventions, on the other hand, move forward the generation of virtual animated replicas of great value and smooth multimedia dissemination. The present paper tackles the different stages of graphic documentation and visualization undertaken in the Parpalló Cave (Cova del Parpalló), Gandia, Valencia. Besides traditional surveying documentation that is based on planimetric and altimetric maps, this paper presents the plotting and animated visualization of the Palaeolithic set not only making use of lights and shadows but also from photorealistic textured 3D models.</p>


Sign in / Sign up

Export Citation Format

Share Document