scholarly journals GNSS Multipath Detection Using Continuous Time-Series C/N0

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4059
Author(s):  
Nobuaki Kubo ◽  
Kaito Kobayashi ◽  
Rei Furukawa

The reduction of multipath errors is a significant challenge in the Global Navigation Satellite System (GNSS), especially when receiving non-line-of-sight (NLOS) signals. However, selecting line-of-sight (LOS) satellites correctly is still a difficult task in dense urban areas, even with the latest GNSS receivers. This study demonstrates a new method of utilization of C/N0 of the GNSS to detect NLOS signals. The elevation-dependent threshold of the C/N0 setting may be effective in mitigating multipath errors. However, the C/N0 fluctuation affected by NLOS signals is quite large. If the C/N0 is over the threshold, the satellite is used for positioning even if it is still affected by the NLOS signal, which causes the positioning error to jump easily. To overcome this issue, we focused on the value of continuous time-series C/N0 for a certain period. If the C/N0 of the satellite was less than the determined threshold, the satellite was not used for positioning for a certain period, even if the C/N0 recovered over the threshold. Three static tests were conducted at challenging locations near high-rise buildings in Tokyo. The results proved that our method could substantially mitigate multipath errors in differential GNSS by appropriately removing the NLOS signals. Therefore, the performance of real-time kinematic GNSS was significantly improved.

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Suhua Tang ◽  
Nao Kawanishi ◽  
Rei Furukawa ◽  
Nobuaki Kubo

Support system for safe driving heavily depends on global navigation satellite system. Pseudoranges between satellites and vehicles are measured to compute vehicles’ positions and their relative positions. In urban areas, however, multipath errors (MPEs) in pseudoranges, caused by obstruction and reflection of roadside buildings, greatly degrade the precision of relative positions. On the other hand, simply removing all reflected signals might lead to a shortage of satellites in fixing positions. In our previous work, we suggested solving this dilemma by cooperative relative positioning (CoRelPos) which exploits spatial correlation of MPEs. In this paper, we collected the trace data of pseudoranges by driving cars in urban areas, analyzed the properties of MPEs (specifically, their dependency on signal strength, elevation angles of satellites, and receivers’ speeds), and highlighted their spatial correlation. On this basis, the CoRelPos scheme is refined by considering the dynamics of MPEs. Evaluation results under practical vehicular scenarios confirm that properties of MPEs can be exploited to improve the precision of relative positions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


2021 ◽  
Author(s):  
Mahmoud Rajabi ◽  
Mstafa Hoseini ◽  
Hossein Nahavandchi ◽  
Maximilian Semmling ◽  
Markus Ramatschi ◽  
...  

<p>Determination and monitoring of the mean sea level especially in the coastal areas are essential, environmentally, and as a vertical datum. Ground-based Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative way which is becoming a reliable alternative for coastal sea-level altimetry. Comparing to traditional tide gauges, GNSS-R can offer different parameters of sea surface, one of which is the sea level. The measurements derived from this technique can cover wider areas of the sea surface in contrast to point-wise observations of a tide gauge.  </p><p>We use long-term ground-based GNSS-R observations to estimate sea level. The dataset includes one-year data from January to December 2016. The data was collected by a coastal GNSS-R experiment at the Onsala space observatory in Sweden. The experiment utilizes three antennas with different polarization designs and orientations. The setup has one up-looking, and two sea-looking antennas at about 3 meters above the sea surface level. The up-looking antenna is Right-Handed Circular Polarization (RHCP). The sea-looking antennas with RHCP and Left-Handed Circular Polarization (LHCP) are used for capturing sea reflected Global Positioning System (GPS) signals. A dedicated reflectometry receiver (GORS type) provides In-phase and Quadrature (I/Q) correlation sums for each antenna based on the captured interferometric signal. The generated time series of I/Q samples from different satellites are analyzed using the Least Squares Harmonic Estimation (LSHE) method. This method is a multivariate analysis tool which can flexibly retrieve the frequencies of a time series regardless of possible gaps or unevenly spaced sampling. The interferometric frequency, which is related to the reflection geometry and sea level, is obtained by LSHE with a temporal resolution of 15 minutes. The sea level is calculated based on this frequency in six modes from the three antennas in GPS L1 and L2 signals.</p><p>Our investigation shows that the sea-looking antennas perform better compared to the up-looking antenna. The highest accuracy is achieved using the sea-looking LHCP antenna and GPS L1 signal. The annual Root Mean Square Error (RMSE) of 15-min GNSS-R water level time series compared to tide gauge observations is 3.7 (L1) and 5.2 (L2) cm for sea-looking LHCP, 5.8 (L1) and 9.1 (L2) cm for sea-looking RHCP, 6.2 (L1) and 8.5 (L2) cm for up-looking RHCP. It is worth noting that the GPS IIR block satellites show lower accuracy due to the lack of L2C code. Therefore, the L2 observations from this block are eliminated.</p>


Author(s):  
Y.-H. Lu ◽  
J.-Y. Han

Abstract. Global Navigation Satellite System (GNSS) is a matured modern technique for spatial data acquisition. Its performance has a great correlation with GNSS receiver position. However, high-density building in urban areas causes signal obstructions and thus hinders GNSS’s serviceability. Consequently, GNSS positioning is weakened in urban areas, so deriving proper improvement resolutions is a necessity. Because topographic effects are considered the main factor that directly block signal transmission between satellites and receivers, this study integrated aerial borne LiDAR point clouds and a 2D building boundary map to provide reliable 3D spatial information to analyze topographic effects. Using such vector data not only reflected high-quality GNSS satellite visibility calculations, but also significantly reduced data amount and processing time. A signal obstruction analysis technique and optimized computational algorithm were also introduced. In conclusion, this paper proposes using superimposed column method to analyze GNSS receivers’ surrounding environments and thus improve GNSS satellite visibility predictions in an efficient and reliable manner.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4948
Author(s):  
Krzysztof Czaplewski ◽  
Zbigniew Wisniewski ◽  
Cezary Specht ◽  
Andrzej Wilk ◽  
Wladyslaw Koc ◽  
...  

Satellite geodetic networks are commonly used in surveying tasks, but they can also be used in mobile surveys. Mobile satellite surveys can be used for trackage inventory, diagnostics and design. The combination of modern technological solutions with the adaptation of research methods known in other fields of science offers an opportunity to acquire highly accurate solutions for railway track inventory. This article presents the effects of work carried out using a mobile surveying platform on which Global Navigation Satellite System (GNSS) receivers were mounted. The satellite observations (surveys) obtained were aligned using one of the methods known from classical land surveying. The records obtained during the surveying campaign on a 246th km railway track section were subjected to alignment. This article provides a description of the surveying campaign necessary to obtain measurement data and a theoretical description of the method employed to align observation results as well as their visualisation.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4375
Author(s):  
Veton Hamza ◽  
Bojan Stopar ◽  
Tomaž Ambrožič ◽  
Goran Turk ◽  
Oskar Sterle

Global Navigation Satellite System (GNSS) technology is widely used for geodetic monitoring purposes. However, in cases where a higher risk of receiver damage is expected, geodetic GNSS receivers may be considered too expensive to be used. As an alternative, low-cost GNSS receivers that are cheap, light, and prove to be of adequate quality over short baselines, are considered. The main goal of this research is to evaluate the positional precision of a multi-frequency low-cost instrument, namely, ZED-F9P with u-blox ANN-MB-00 antenna, and to investigate its potential for displacement detection. We determined the positional precision within static survey, and the displacement detection within dynamic survey. In both cases, two baselines were set, with the same rover point equipped with a low-cost GNSS instrument. The base point of the first baseline was observed with a geodetic GNSS instrument, whereas the second baseline was observed with a low-cost GNSS instrument. The results from static survey for both baselines showed comparable results for horizontal components; the precision was on a level of 2 mm or better. For the height component, the results show a better performance of low-cost instruments. This may be a consequence of unknown antenna calibration parameters for low-cost GNSS antenna, while statistically significant coordinates of rover points were obtained from both baselines. The difference was again more significant in the height component. For the displacement detection, a device was used that imposes controlled movements with sub-millimeter accuracy. Results, obtained on a basis of 30-min sessions, show that low-cost GNSS instruments can detect displacements from 10 mm upwards with a high level of reliability. On the other hand, low-cost instruments performed slightly worse as far as accuracy is concerned.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Sakpod Tongleamnak ◽  
Masahiko Nagai

Performance of Global Navigation Satellite System (GNSS) positioning in urban environments is hindered by poor satellite availability because there are many man-made and natural objects in urban environments that obstruct satellite signals. To evaluate the availability of GNSS in cities, this paper presents a software simulation of GNSS availability in urban areas using a panoramic image dataset from Google Street View. Photogrammetric image processing techniques are applied to reconstruct fisheye sky view images and detect signal obstacles. Two comparisons of the results from the simulation and real world observation in Bangkok and Tokyo are also presented and discussed for accuracy assessment.


2018 ◽  
Vol 24 (4) ◽  
pp. 470-484
Author(s):  
Alfonso Tierra ◽  
Rubén León ◽  
Alexis Tinoco-S ◽  
Carolina Cañizares ◽  
Marco Amores ◽  
...  

Abstract The time series content information about the dynamic behavior of the system under study. This behavior could be complex, irregular and no lineal. For this reason, it is necessary to study new models that can solve this dynamic more satisfactorily. In this work a visual analysis of recurrence from time series of the coordinate’s variation ENU (East, North, Up) will be made. This analysis was obtained from nine continuous monitoring stations GPS (Global Navigation Satellite System); the intention is to study their behavior, they belong to the Equatorian GPS Network that materializes the reference system SIRGAS - ECUADOR. The presence of noise in the observations was reduced using digital low pass filters with Finite Impulse Response (FIR). For these series, the time delay was determined using the average mutual information, and for the minimum embedding dimension the False Nearest Neighbours (FNN) method was used; the purpose is to obtain the recurrent maps of each coordinates. The results of visual analysis show a strong tendency, especially in the East and North coordinates, while the Up coordinates indicate discontinued, symmetric and periodic behavior.


1998 ◽  
Vol 51 (3) ◽  
pp. 382-393 ◽  
Author(s):  
M. Tsakiri ◽  
M. Stewart ◽  
T. Forward ◽  
D. Sandison ◽  
J. Walker

The increasing volume of traffic in urban areas has resulted in steady growth of the mean driving time on fixed routes. Longer driving times lead to significantly higher transportation costs, particularly for vehicle fleets, where efficiency in the distribution of their transport tasks is important in staying competitive in the market. For bus fleets, the optimal control and command of the vehicles is, as well as the economic requirements, a basic function of their general mission. The Global Positioning System (GPS) allows reliable and accurate positioning of public transport vehicles except within the physical limitations imposed by built-up city ‘urban canyons’. With a view to the next generation of satellite positioning systems for public transport fleet management, this paper highlights the limitations imposed on current GPS systems operating in the urban canyon. The capabilities of a future positioning system operating in this type of environment are discussed. It is suggested that such a system could comprise receivers capable of integrating the Global Positioning System (GPS) and the Russian equivalent, the Global Navigation Satellite System (GLONASS), and relatively cheap dead-reckoning sensors.


Sign in / Sign up

Export Citation Format

Share Document