scholarly journals WASN-Based Day–Night Characterization of Urban Anomalous Noise Events in Narrow and Wide Streets

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4760
Author(s):  
Francesc Alías ◽  
Joan Claudi Socoró ◽  
Rosa Ma Alsina-Pagès

In addition to air pollution, environmental noise has become one of the major hazards for citizens, being Road Traffic Noise (RTN) as its main source in urban areas. Recently, low-cost Wireless Acoustic Sensor Networks (WASNs) have become an alternative to traditional strategic noise mapping in cities. In order to monitor RTN solely, WASN-based approaches should automatize the off-line removal of those events unrelated to regular road traffic (e.g., sirens, airplanes, trams, etc.). Within the LIFE DYNAMAP project, 15 urban Anomalous Noise Events (ANEs) were described through an expert-based recording campaign. However, that work only focused on the overall analysis of the events gathered during non-sequential diurnal periods. As a step forward to characterize the temporal and local particularities of urban ANEs in real acoustic environments, this work analyses their distribution between day (06:00–22:00) and night (22:00–06:00) in narrow (1 lane) and wide (more than 1 lane) streets. The study is developed on a manually-labelled 151-h acoustic database obtained from the 24-nodes WASN deployed across DYNAMAP’s Milan pilot area during a weekday and a weekend day. Results confirm the unbalanced nature of the problem (RTN represents 83.5% of the data), while identifying 26 ANE subcategories mainly derived from pedestrians, animals, transports and industry. Their presence depends more significantly on the time period than on the street type, as most events have been observed in the day-time during the weekday, despite being especially present in narrow streets. Moreover, although ANEs show quite similar median durations regardless of time and location in general terms, they usually present higher median signal-to-noise ratios at night, mainly on the weekend, which becomes especially relevant for the WASN-based computation of equivalent RTN levels.

Proceedings ◽  
2020 ◽  
Vol 42 (1) ◽  
pp. 60 ◽  
Author(s):  
Francesc Alías ◽  
Joan Claudi Socoró ◽  
Ferran Orga ◽  
Rosa Ma Alsina-Pagès

Road Traffic Noise (RTN) is one of the main pollutants in urban and suburban areas, negatively affecting the quality of life of their inhabitants. In the context of the European LIFE DYNAMAP project, two Wireless Acoustic Sensor Networks (WASN) have been deployed to monitor RTN: one in District 9 of Milan, and another along the A90 motorway of Rome. Since the dynamic mapping system should be able to identify and remove those Anomalous Noise Events (ANEs) unrelated to regular road traffic (e.g., sirens, horns, speech, and doors), an Anomalous Noise Event Detector (ANED) has been included in the dynamic noise mapping pipeline to avoid biasing the computation of the equivalent RTN levels. After deploying the 24 low-cost acoustic sensor networks in both pilot areas, WASN-based acoustic datasets were built to adapt the previous version of the ANED algorithm to run in real-operation conditions. In this work, we describe the preliminary results of the analysis of the 154 h WASN-based urban acoustic dataset obtained from the Milan city in terms of the main characteristics of ANEs. The results confirm the unbalanced nature of the problem (83.7% of the data corresponds to RTN), showing the urban WASN-based dataset a larger number of ANEs with higher local predominance than what was observed in the previous expert-based recording campaign, which underlines the importance of the accurate modeling of the urban acoustic environment to train the ANED properly.


2021 ◽  
Vol 263 (4) ◽  
pp. 2044-2051
Author(s):  
Han Li ◽  
Kean Chen ◽  
Bernhard U. Seeber

Noise pollution has become a growing concern in public health. The availability of low-cost wireless acoustic sensor networks permits continuous monitoring of noise. However, real acoustic scenes are composed of irrelevant sources (anomalous noise) that overlap with monitored noise, causing biased evaluation and controversy. One classical scene is selected in our study. For road traffic noise assessment, other possible non-traffic noise (e.g., speech, thunder) should be excluded to obtain a reliable evaluation. Because anomalous noise is diverse, occasional, and unpredictable in real-life scenes, removing it from the mixture is a challenge. We explore a fully convolutional time-domain audio separation network (ConvTasNet) for arbitrary sound separation. ConvTasNet is trained by a large dataset, including environmental sounds, speech, and music over 150 hours. After training, the scale-invariant signal-to-distortion ratio (SI-SDR) is improved by 11.40 dB on average for an independent test dataset. ConvTasNet is next applied to anomalous noise separation of traffic noise scenes. We mix traffic noise and anomalous noise at random SNR between -10 dB to 0 dB. Separation is especially effective for salient and long-term anomalous noise, which smooth the overall sound pressure level curve over time. Results emphasize the importance of anomalous noise separation for reliable evaluation.


2016 ◽  
Vol 22 (1) ◽  
Author(s):  
PETROVICI ALINA ◽  
TOMOZEI CLAUDIA ◽  
NEDEFF FLORIN ◽  
IRIMIA OANA ◽  
PANAINTE-LEHADUS MIRELA

<p>This paper presents a synthesis of current state of the assessment of road traffic noise in urban areas considering economic, social and legal aspects. Therefore, there were described several prediction methods of the urban traffic noise. These methods are useful in calculating the exposure of the population at noise levels which exceed the permissible limits. Mapping is one of the most common methods used for the assessment of noise. Whether it is industrial, airport, rail or road traffic noise, noise mapping provides accurate data needed later in developing action plans against noise. The road traffic noise assessments are performed periodically, and a representative picture of the noise in the analysed areas is obtained. Then, the action plans can be developed in order to reduce road traffic noise, where it is necessary.</p>


Author(s):  
K. Kumar ◽  
H. Ledoux ◽  
T. J. F. Commandeur ◽  
J. E. Stoter

Road traffic and industrial noise has become a major source of discomfort and annoyance among the residents in urban areas. More than 44&amp;thinsp;% of the EU population is regularly exposed to road traffic noise levels over 55 dB, which is currently the maximum accepted value prescribed by the Environmental Noise Directive for road traffic noise. With continuously increasing population and number of motor vehicles and industries, it is very unlikely to hope for noise levels to diminish in the near future. Therefore, it is necessary to monitor urban noise, so as to make mitigation plans and to deal with its adverse effects. The 2002/49/EC Environmental Noise Directive aims to determine the exposure of an individual to environmental noise through noise mapping. One of the most important steps in noise mapping is the creation of input data for simulation. At present, it is done semi-automatically (and sometimes even manually) by different companies in different ways and is very time consuming and can lead to errors in the data. In this paper, we present our approach for automatically creating input data for noise simulations. Secondly, we focus on using 3D city models for presenting the results of simulation for the noise arising from road traffic and industrial activities in urban areas. We implemented a few noise modelling standards for industrial and road traffic noise in CityGML by extending the existing Noise ADE with new objects and attributes. This research is a steping stone in the direction of standardising the input and output data for noise studies and for reconstructing the 3D data accordingly.


Noise Mapping ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Francesc Alías ◽  
Rosa Ma Alsina-Pagès ◽  
Ferran Orga ◽  
Joan Claudi Socoró

Abstract Environmental noise is increasing year after year, especially in urban and suburban areas. Besides annoyance, environmental noise also causes harmful health effects on people. The Environmental Noise Directive 2002/49/EC (END) is the main instrument of the European Union to identify and combat noise pollution, followed by the CNOSSOS-EU methodological framework. In compliance with the END legislation, the European Member States are required to publish noise maps and action plans every five years. The emergence of Wireless Acoustic Sensor Networks (WASNs) have changed the paradigm to address the END regulatory requirements, allowing the dynamic ubiquitous measurement of environmental noise pollution. Following the END, the LIFE DYNAMAP project aims to develop a WASN-based low-cost noise mapping system to monitor the acoustic impact of road infrastructures in real time. Those acoustic events unrelated to regular traffic noise should be removed from the equivalent noise level calculations to avoid biasing the noise map generation. This work describes the different approaches developed within the DYNAMAP project to implement an Anomalous Noise Event Detector on the low-cost sensors of the network, considering both synthetic and real-life acoustic data.Moreover, the paper reflects on several open challenges, discussing how to tackle them for the future deployment of WASN-based noise monitoring systems in real-life operating conditions.


Noise Mapping ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 74-83
Author(s):  
Pervez Alam ◽  
Kafeel Ahmad ◽  
S. S. Afsar ◽  
Nasim Akhtar

AbstractNoise pollution has been rising as a critical issue in recent days particularly for the people living in urban areas. This study has been conducted to find out the effects of traffic induced noise on nearby residential building through 3D noise mapping with and without noise Barriers. Monitoring has been carried out at various densely populated preselected locations of Delhi, India. Thereafter, 3D noise mapping has been done using hourly average noise levels for the locations exposed with maximum noise. The developed 3D noise map shows the variation of noise level along X, Y and Z direction for all selected locations before and after installation of noise barriers. Moreover, the result also shows that exact assessment of noise impact is possible through 3D noise mapping, when a multistory building close to the source of noise is taken into consideration. This paper also elaborates the adequate height, distance and NRC value of noise barrier to reduce the effect of road traffic noise on nearby high rise building. Reduction pattern of noise level can easily be visualized and evaluated by using these maps. This type of study could support decision makers during adaptation of suitable remedial measures.


2016 ◽  
Vol 22 (1) ◽  
pp. 81-89
Author(s):  
ALINA PETROVICI ◽  
CLAUDIA TOMOZEI ◽  
FLORIN NEDEFF ◽  
OANA IRIMIA ◽  
MIRELA PANAINTE-LEHADUS

This paper presents a synthesis of current state of the assessment of road traffic noise in urban areas considering economic, social and legal aspects. Therefore, there were described several prediction methods of the urban traffic noise. These methods are useful in calculating the exposure of the population at noise levels which exceed the permissible limits. Mapping is one of the most common methods used for the assessment of noise. Whether it is industrial, airport, rail or road traffic noise, noise mapping provides accurate data needed later in developing action plans against noise. The road traffic noise assessments are performed periodically, and a representative picture of the noise in the analysed areas is obtained. Then, the action plans can be developed in order to reduce road traffic noise, where it is necessary.


2021 ◽  
Vol 263 (3) ◽  
pp. 3282-3293
Author(s):  
Jens Forssén ◽  
Andreas Gustafson ◽  
Meta Berghauser Pont ◽  
Marie Haeger-Eugensson ◽  
Christine Achberger ◽  
...  

For a model set of 31 different building morphologies in an urban setting, road traffic noise exposure has been calculated and analysed. For five of the building morphologies also vegetation surfaces on facades and roofs were studied. Facade exposures were analysed for both smaller (single-sided) flats and larger (floor-through) flats, considering the direct exposure from the roads as well as the non-direct exposure at noise-shielded positions like inner yards, applying a noise mapping software in combination with a prediction model for the non-direct exposure. Using noise indicators Lden and Lnight, the disease burden, in terms of DALY (Disability-Adjusted Life Years) per person, was estimated and analysed, via predictions of annoyance and sleep disturbance. The resulting effects of varying the building morphology and adding vegetation are shown and discussed, including effects of a bonus model for flats having additional facade elements with lower noise exposure.


2019 ◽  
Vol 3 (2) ◽  
pp. 34 ◽  
Author(s):  
Markus Berger ◽  
Ralf Bill

Urban traffic noise situations are usually visualized as conventional 2D maps or 3D scenes. These representations are indispensable tools to inform decision makers and citizens about issues of health, safety, and quality of life but require expert knowledge in order to be properly understood and put into context. The subjectivity of how we perceive noise as well as the inaccuracies in common noise calculation standards are rarely represented. We present a virtual reality application that seeks to offer an audiovisual glimpse into the background workings of one of these standards, by employing a multisensory, immersive analytics approach that allows users to interactively explore and listen to an approximate rendering of the data in the same environment that the noise simulation occurs in. In order for this approach to be useful, it should manage complicated noise level calculations in a real time environment and run on commodity low-cost VR hardware. In a prototypical implementation, we utilized simple VR interactions common to current mobile VR headsets and combined them with techniques from data visualization and sonification to allow users to explore road traffic noise in an immersive real-time urban environment. The noise levels were calculated over CityGML LoD2 building geometries, in accordance with Common Noise Assessment Methods in Europe (CNOSSOS-EU) sound propagation methods.


Sign in / Sign up

Export Citation Format

Share Document