scholarly journals MODELLING URBAN NOISE IN CITYGML ADE: CASE OF THE NETHERLANDS

Author(s):  
K. Kumar ◽  
H. Ledoux ◽  
T. J. F. Commandeur ◽  
J. E. Stoter

Road traffic and industrial noise has become a major source of discomfort and annoyance among the residents in urban areas. More than 44 % of the EU population is regularly exposed to road traffic noise levels over 55 dB, which is currently the maximum accepted value prescribed by the Environmental Noise Directive for road traffic noise. With continuously increasing population and number of motor vehicles and industries, it is very unlikely to hope for noise levels to diminish in the near future. Therefore, it is necessary to monitor urban noise, so as to make mitigation plans and to deal with its adverse effects. The 2002/49/EC Environmental Noise Directive aims to determine the exposure of an individual to environmental noise through noise mapping. One of the most important steps in noise mapping is the creation of input data for simulation. At present, it is done semi-automatically (and sometimes even manually) by different companies in different ways and is very time consuming and can lead to errors in the data. In this paper, we present our approach for automatically creating input data for noise simulations. Secondly, we focus on using 3D city models for presenting the results of simulation for the noise arising from road traffic and industrial activities in urban areas. We implemented a few noise modelling standards for industrial and road traffic noise in CityGML by extending the existing Noise ADE with new objects and attributes. This research is a steping stone in the direction of standardising the input and output data for noise studies and for reconstructing the 3D data accordingly.

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 609 ◽  
Author(s):  
Francesc Alías ◽  
Ferran Orga ◽  
Rosa Ma Alsina-Pagès ◽  
Joan Claudi Socoró

Environmental noise can be defined as the accumulation of noise pollution caused by sounds generated by outdoor human activities, Road Traffic Noise (RTN) being the main source in urban and suburban areas. To address the negative effects of environmental noise on public health, the European Environmental Noise Directive requires EU member states to tailor noise maps and define the corresponding action plans every five years for major agglomerations and key infrastructures. Noise maps have been hitherto created from expert-based measurements, after cleaning the recorded acoustic data of undesired acoustic events, or Anomalous Noise Events (ANEs). In recent years, Wireless Acoustic Sensor Networks (WASNs) have become an alternative. However, most of the proposals focus on measuring global noise levels without taking into account the presence of ANEs. The LIFE DYNAMAP project has developed a WASN-based dynamic noise mapping system to analyze the acoustic impact of road infrastructures in real time based solely on RTN levels. After studying the bias caused by individual ANEs on the computation of the A-weighted equivalent noise levels through an expert-based dataset obtained before installing the sensor networks, this work evaluates the aggregate impact of the ANEs on the RTN measurements in a real-operation environment. To that effect, 304 h and 20 min of labeled acoustic data collected through the two WASNs deployed in both pilot areas have been analyzed, computing the individual and aggregate impacts of ANEs for each sensor location and impact range (low, medium and high) for a 5 min integration time. The study shows the regular occurrence of ANEs when monitoring RTN levels in both acoustic environments, which are especially common in the urban area. Moreover, the results reveal that the aggregate contribution of low- and medium-impact ANEs can become as critical as the presence of high-impact individual ANEs, thus highlighting the importance of their automatic removal to obtain reliable WASN-based RTN maps in real-operation environments.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ni Sheng ◽  
Zherui Xu ◽  
Min Li

The Calculation of Road Traffic Noise (CRTN) model is one of the first traffic noise prediction models in the world and has been widely used in many Western countries. However, its performance in a motorcycle city has not been well assessed. This study aims to examine the accuracy of the CRTN model in predicting traffic noise in an Asian city with over half of motor vehicles being motorcycles. The performance of the CRTN model in predicting both roadside and vertical distributions of traffic noise levels is assessed. The results show that the performance of the CRTN model is satisfactory in predicting roadside traffic noise levels, with anR2of 0.832 and a mean difference of +0.52 dB(A) between the measured and predicted values. The performance of the CRTN model is also satisfactory in predicting vertical distribution of traffic noise levels, with anR2of 0.836 and a mean difference of +0.28 dB(A) between the measured and predicted values.


2021 ◽  
Vol 11 (16) ◽  
pp. 7196
Author(s):  
Dámaris A. Jiménez-Uribe ◽  
Darwin Daniels ◽  
Zoë L. Fleming ◽  
Andrés M. Vélez-Pereira

The objective of this study was to determine the influence of vehicular traffic on the environmental noise levels of the Santa Marta City tourist route on the Colombian coast. An analysis of vehicle types and frequencies at various times of the day over nearly a year helped to track the main sources of environmental noise pollution. Five sampling points were selected, which were distributed over 12 km, with three classified as peripheral urban and two as suburban. The average traffic flow was 966 vehicles/h and was mainly composed of automobiles, with higher values in the peripheral urban area. The noise level was 103.3 dBA, with background and peak levels of 87.2 and 107.3 dBA, respectively. The noise level was higher during the day; however, there were no differences between weekdays and weekends. The results from the analysis of variance showed that the number of vehicles and the noise levels varied greatly according to the time of day and sampling point location. The peak and mean noise levels were correlated with the number of automobiles, buses and heavy vehicles. The mean noise levels were similar at all sample points despite the traffic flow varying, and the background noise was only correlated for automobiles (which varied much more than the heavy vehicles between day and night).


2016 ◽  
Vol 22 (1) ◽  
Author(s):  
PETROVICI ALINA ◽  
TOMOZEI CLAUDIA ◽  
NEDEFF FLORIN ◽  
IRIMIA OANA ◽  
PANAINTE-LEHADUS MIRELA

<p>This paper presents a synthesis of current state of the assessment of road traffic noise in urban areas considering economic, social and legal aspects. Therefore, there were described several prediction methods of the urban traffic noise. These methods are useful in calculating the exposure of the population at noise levels which exceed the permissible limits. Mapping is one of the most common methods used for the assessment of noise. Whether it is industrial, airport, rail or road traffic noise, noise mapping provides accurate data needed later in developing action plans against noise. The road traffic noise assessments are performed periodically, and a representative picture of the noise in the analysed areas is obtained. Then, the action plans can be developed in order to reduce road traffic noise, where it is necessary.</p>


Noise Mapping ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 16-31 ◽  
Author(s):  
Jerónimo Vida Manzano ◽  
José Antonio Almagro Pastor ◽  
Rafael García Quesada ◽  
Francesco Aletta ◽  
Tin Oberman ◽  
...  

Abstract Exceptional circumstances in the city of Granada due to the COVID-19 lockdown have provided the opportunity to characterise the impact of humans on its urban acoustic climate. Traditional environmental noise management and urban sound planning usually take into account noise sources in the city, such as industrial activities or road traffic noise, in model estimations, as well as in empirical research. But trying to isolate human impact by itself, human activity including social activity, walking, talking or just going around the city, has always been a difficult or even impossible task. The COVID-19 lockdown measures have provided the opportunity to study urban climate as never before, affected just by natural or animal noise sources. Previous soundscape research at some iconic sites in the city of Granada carried out in 2019 before the lockdown and a special measuring campaign carried out at the same locations during the lockdown in 2020 offered valuable information on sound levels and local characteristics in order to carry out this comparison. Results show a great change in environmental noise levels that is interesting not only because of its magnitude, but also for its implications, especially at those sites where social human activity was an identifying characteristic. Natural or animal sounds became surprisingly evident at some study sites, especially where road traffic noise dramatically decreased, leading to significantly lower background noise levels. Important spectral changes are observed before and during the lockdown, suggesting a shift from anthropic to animal sources in the acoustic environment.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4760
Author(s):  
Francesc Alías ◽  
Joan Claudi Socoró ◽  
Rosa Ma Alsina-Pagès

In addition to air pollution, environmental noise has become one of the major hazards for citizens, being Road Traffic Noise (RTN) as its main source in urban areas. Recently, low-cost Wireless Acoustic Sensor Networks (WASNs) have become an alternative to traditional strategic noise mapping in cities. In order to monitor RTN solely, WASN-based approaches should automatize the off-line removal of those events unrelated to regular road traffic (e.g., sirens, airplanes, trams, etc.). Within the LIFE DYNAMAP project, 15 urban Anomalous Noise Events (ANEs) were described through an expert-based recording campaign. However, that work only focused on the overall analysis of the events gathered during non-sequential diurnal periods. As a step forward to characterize the temporal and local particularities of urban ANEs in real acoustic environments, this work analyses their distribution between day (06:00–22:00) and night (22:00–06:00) in narrow (1 lane) and wide (more than 1 lane) streets. The study is developed on a manually-labelled 151-h acoustic database obtained from the 24-nodes WASN deployed across DYNAMAP’s Milan pilot area during a weekday and a weekend day. Results confirm the unbalanced nature of the problem (RTN represents 83.5% of the data), while identifying 26 ANE subcategories mainly derived from pedestrians, animals, transports and industry. Their presence depends more significantly on the time period than on the street type, as most events have been observed in the day-time during the weekday, despite being especially present in narrow streets. Moreover, although ANEs show quite similar median durations regardless of time and location in general terms, they usually present higher median signal-to-noise ratios at night, mainly on the weekend, which becomes especially relevant for the WASN-based computation of equivalent RTN levels.


Noise Mapping ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Francesc Alías ◽  
Rosa Ma Alsina-Pagès ◽  
Ferran Orga ◽  
Joan Claudi Socoró

Abstract Environmental noise is increasing year after year, especially in urban and suburban areas. Besides annoyance, environmental noise also causes harmful health effects on people. The Environmental Noise Directive 2002/49/EC (END) is the main instrument of the European Union to identify and combat noise pollution, followed by the CNOSSOS-EU methodological framework. In compliance with the END legislation, the European Member States are required to publish noise maps and action plans every five years. The emergence of Wireless Acoustic Sensor Networks (WASNs) have changed the paradigm to address the END regulatory requirements, allowing the dynamic ubiquitous measurement of environmental noise pollution. Following the END, the LIFE DYNAMAP project aims to develop a WASN-based low-cost noise mapping system to monitor the acoustic impact of road infrastructures in real time. Those acoustic events unrelated to regular traffic noise should be removed from the equivalent noise level calculations to avoid biasing the noise map generation. This work describes the different approaches developed within the DYNAMAP project to implement an Anomalous Noise Event Detector on the low-cost sensors of the network, considering both synthetic and real-life acoustic data.Moreover, the paper reflects on several open challenges, discussing how to tackle them for the future deployment of WASN-based noise monitoring systems in real-life operating conditions.


Noise Mapping ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 74-83
Author(s):  
Pervez Alam ◽  
Kafeel Ahmad ◽  
S. S. Afsar ◽  
Nasim Akhtar

AbstractNoise pollution has been rising as a critical issue in recent days particularly for the people living in urban areas. This study has been conducted to find out the effects of traffic induced noise on nearby residential building through 3D noise mapping with and without noise Barriers. Monitoring has been carried out at various densely populated preselected locations of Delhi, India. Thereafter, 3D noise mapping has been done using hourly average noise levels for the locations exposed with maximum noise. The developed 3D noise map shows the variation of noise level along X, Y and Z direction for all selected locations before and after installation of noise barriers. Moreover, the result also shows that exact assessment of noise impact is possible through 3D noise mapping, when a multistory building close to the source of noise is taken into consideration. This paper also elaborates the adequate height, distance and NRC value of noise barrier to reduce the effect of road traffic noise on nearby high rise building. Reduction pattern of noise level can easily be visualized and evaluated by using these maps. This type of study could support decision makers during adaptation of suitable remedial measures.


Author(s):  
Vilas K Patil ◽  
P.P. Nagarale

Recently in urban areas, road traffic noise is one of the primary sources of noise pollution. Variation in noise level is impacted by the synthesis of traffic and the percentage of heavy vehicles. Presentation to high noise levels may cause serious impact on the health of an individual or community residing near the roadside. Thus, predicting the vehicular traffic noise level is important. The present study aims at the formulation of regression, an artificial neural network (ANN) and an adaptive neuro-fuzzy interface system (ANFIS) model using the data of observed noise levels, traffic volume, and average speed of vehicles for the prediction of L10 and Leq. Measured noise levels are compared to the noise levels predicted by the experimental model. It is observed that the ANFIS approach is more superior when compared to output given by regression and an ANN model. Also, there exists a positive correlation between measured and predicted noise levels. The proposed ANFIS model can be utilized as a tool for traffic direction and planning of new roads in zones of similar land use pattern.


2016 ◽  
Vol 22 (1) ◽  
pp. 81-89
Author(s):  
ALINA PETROVICI ◽  
CLAUDIA TOMOZEI ◽  
FLORIN NEDEFF ◽  
OANA IRIMIA ◽  
MIRELA PANAINTE-LEHADUS

This paper presents a synthesis of current state of the assessment of road traffic noise in urban areas considering economic, social and legal aspects. Therefore, there were described several prediction methods of the urban traffic noise. These methods are useful in calculating the exposure of the population at noise levels which exceed the permissible limits. Mapping is one of the most common methods used for the assessment of noise. Whether it is industrial, airport, rail or road traffic noise, noise mapping provides accurate data needed later in developing action plans against noise. The road traffic noise assessments are performed periodically, and a representative picture of the noise in the analysed areas is obtained. Then, the action plans can be developed in order to reduce road traffic noise, where it is necessary.


Sign in / Sign up

Export Citation Format

Share Document