scholarly journals A Framework for Human-Robot-Human Physical Interaction Based on N-Player Game Theory

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 5005
Author(s):  
Rui Zou ◽  
Yubin Liu ◽  
Jie Zhao ◽  
Hegao Cai

In order to analyze the complex interactive behaviors between the robot and two humans, this paper presents an adaptive optimal control framework for human-robot-human physical interaction. N-player linear quadratic differential game theory is used to describe the system under study. N-player differential game theory can not be used directly in actual scenerie, since the robot cannot know humans’ control objectives in advance. In order to let the robot know humans’ control objectives, the paper presents an online estimation method to identify unknown humans’ control objectives based on the recursive least squares algorithm. The Nash equilibrium solution of human-robot-human interaction is obtained by solving the coupled Riccati equation. Adaptive optimal control can be achieved during the human-robot-human physical interaction. The effectiveness of the proposed method is demonstrated by rigorous theoretical analysis and simulations. The simulation results show that the proposed controller can achieve adaptive optimal control during the interaction between the robot and two humans. Compared with the LQR controller, the proposed controller has more superior performance.


2014 ◽  
Vol 687-691 ◽  
pp. 260-264
Author(s):  
Feng Tian ◽  
Ji Feng Zou ◽  
Tong Zhang

In this paper, a method of the UAV path planing in the complex environment by using artificial potential field and differential game theory is introduced. This article studies the pursuit evasion game of the dynamic path planing for the UAV. The fly zone of either the pursuer or the evader is divided into two categories, namely the obstacle areas and the obstacle-free areas. So we can use the artificial potential field in the obstacle areas,and we use differential game theory in the obstacle-free areas for the UAV. This method can apply to pursuit-evasion game in the complex environment for the UAV path planing.Not only the UAV can avoid obstacles but also they can find the best capture path.Finally,the simulation results verify its correctness and validity .



2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Qilong Sun ◽  
Minghui Shen ◽  
Xiaolong Gu ◽  
Kang Hou ◽  
Naiming Qi

The active defense scenario in which the attacker evades from the defender and pursues the target is investigated. In this scenario, the target evades from the attacker, and the defender intercepts the attacker by using the optimal strategies. The evasion and the pursuit boundaries are investigated for the attacker when the three players use the one-to-one optimal guidance laws, which are derived based on differential game theory. It is difficult for the attacker to accomplish the task by using the one-to-one optimal guidance law; thus, a new guidance law is derived. Unlike other papers, in this paper, the accelerations of the target and the defender are unknown to the attacker. The new strategy is derived by linearizing the model along the initial line of sight, and it is obtained based on the open-loop solution form as the closed-loop problem is hard to solve. The results of the guidance performance for the derived guidance law are presented by numerical simulations, and it shows that the attacker can evade the defender and intercept the target successfully by using the proposed strategy.





Sign in / Sign up

Export Citation Format

Share Document