scholarly journals Intelligent Sensory Pen for Aiding in the Diagnosis of Parkinson’s Disease from Dynamic Handwriting Analysis

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5840 ◽  
Author(s):  
Eugênio Peixoto Júnior ◽  
Italo L. D. Delmiro ◽  
Naercio Magaia ◽  
Fernanda M. Maia ◽  
Mohammad Mehedi Hassan ◽  
...  

In this paper, we propose a pen device capable of detecting specific features from dynamic handwriting tests for aiding on automatic Parkinson’s disease identification. The method used in this work uses machine learning to compare the raw signals from different sensors in the device coupled to a pen and extract relevant information such as tremors and hand acceleration to diagnose the patient clinically. Additionally, the datasets composed of raw signals from healthy and Parkinson’s disease patients acquired here are made available to further contribute to research related to this topic.

2020 ◽  
Vol 13 (5) ◽  
pp. 508-523 ◽  
Author(s):  
Guan‐Hua Huang ◽  
Chih‐Hsuan Lin ◽  
Yu‐Ren Cai ◽  
Tai‐Been Chen ◽  
Shih‐Yen Hsu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandre Boutet ◽  
Radhika Madhavan ◽  
Gavin J. B. Elias ◽  
Suresh E. Joel ◽  
Robert Gramer ◽  
...  

AbstractCommonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an observational trial in 67 PD patients using optimal and non-optimal stimulation settings. Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked by preferential engagement of the motor circuit. Then, we build a machine learning model predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients. We propose that fMRI brain responses to DBS stimulation in PD patients could represent an objective biomarker of clinical response. Upon further validation with additional studies, these findings may open the door to functional imaging-assisted DBS programming.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 147635-147646 ◽  
Author(s):  
Wu Wang ◽  
Junho Lee ◽  
Fouzi Harrou ◽  
Ying Sun

2021 ◽  
Author(s):  
Anat Mirelman ◽  
Mor Ben Or Frank ◽  
Michal Melamed ◽  
Lena Granovsky ◽  
Alice Nieuwboer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document