scholarly journals A Robust INS/SRS/CNS Integrated Navigation System with the Chi-Square Test-Based Robust Kalman Filter

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5909
Author(s):  
Guangle Gao ◽  
Shesheng Gao ◽  
Genyuan Hong ◽  
Xu Peng ◽  
Tian Yu

In order to achieve a highly autonomous and reliable navigation system for aerial vehicles that involves the spectral redshift navigation system (SRS), the inertial navigation (INS)/spectral redshift navigation (SRS)/celestial navigation (CNS) integrated system is designed and the spectral-redshift-based velocity measurement equation in the INS/SRS/CNS system is derived. Furthermore, a new chi-square test-based robust Kalman filter (CSTRKF) is also proposed in order to improve the robustness of the INS/SRS/CNS navigation system. In the CSTRKF, the chi-square test (CST) not only detects measurements with outliers and in non-Gaussian distributions, but also estimates the statistical characteristics of measurement noise. Finally, the results of our simulations indicate that the INS/SRS/CNS integrated navigation system with the CSTRKF possesses strong robustness and high reliability.

2018 ◽  
Vol 41 (5) ◽  
pp. 1290-1300
Author(s):  
Jieliang Shen ◽  
Yan Su ◽  
Qing Liang ◽  
Xinhua Zhu

An inertial navigation system (INS) aided with an aircraft dynamic model (ADM) is developed as a novel airborne integrated navigation system, coping with the absence of a global navigation satellite system. To overcome the shortcomings of the conventional linear integration of INS/ADM based on an extended Kalman filter, a nonlinear integration method is proposed. Fast-update ADM makes it possible to utilize a direct filtering method, which employs nonlinear INS mechanics as system equations and a nonlinear ADM as observation equations, substituting the indirect filtering based on linear error equations. The strong nonlinearity generally calls for an unscented Kalman filter to accomplish the fusion process. Dealing with the model uncertainty, the inaccurate statistical characteristics of the noise and the potential nonpositive definiteness of the covariance matrix, an improved square-root unscented H∞ filter (ISRUHF) is derived in the paper, in which the robust factor [Formula: see text] is further expanded into a diagonal matrix [Formula: see text], to improve the accuracy and robustness of the integrated navigation system. Corresponding simulations as well as real flight tests based on a small-scale fixed-wing aircraft are operated and ISRUHF shows superiority compared with the commonly used fusion algorithm.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 51386-51395 ◽  
Author(s):  
Li Luo ◽  
Yonggang Zhang ◽  
Tao Fang ◽  
Ning Li

2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


Author(s):  

The schemes of navigation systems correction are considered. The operation mode of the aircraft during navigation is analyzed. An adaptive modification of the linear Kalman filter is used to correct the navigation information. An algorithm for predicting a correction signal based on a neural network in the event of a loss of a SNS correction signal is formed. Experimental results show the effectiveness of the algorithm. Keywords aircraft; inertial navigation system; satellite system; Kalman filter; neural networks; genetic algorithm


Sign in / Sign up

Export Citation Format

Share Document