scholarly journals Super-Resolution Enhancement Method Based on Generative Adversarial Network for Integral Imaging Microscopy

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2164
Author(s):  
Md. Shahinur Alam ◽  
Ki-Chul Kwon ◽  
Munkh-Uchral Erdenebat ◽  
Mohammed Y. Abbass ◽  
Md. Ashraful Alam ◽  
...  

The integral imaging microscopy system provides a three-dimensional visualization of a microscopic object. However, it has a low-resolution problem due to the fundamental limitation of the F-number (the aperture stops) by using micro lens array (MLA) and a poor illumination environment. In this paper, a generative adversarial network (GAN)-based super-resolution algorithm is proposed to enhance the resolution where the directional view image is directly fed as input. In a GAN network, the generator regresses the high-resolution output from the low-resolution input image, whereas the discriminator distinguishes between the original and generated image. In the generator part, we use consecutive residual blocks with the content loss to retrieve the photo-realistic original image. It can restore the edges and enhance the resolution by ×2, ×4, and even ×8 times without seriously hampering the image quality. The model is tested with a variety of low-resolution microscopic sample images and successfully generates high-resolution directional view images with better illumination. The quantitative analysis shows that the proposed model performs better for microscopic images than the existing algorithms.

Author(s):  
F. Pineda ◽  
V. Ayma ◽  
C. Beltran

Abstract. High-resolution satellite images have always been in high demand due to the greater detail and precision they offer, as well as the wide scope of the fields in which they could be applied; however, satellites in operation offering very high-resolution (VHR) images has experienced an important increase, but they remain as a smaller proportion against existing lower resolution (HR) satellites. Recent models of convolutional neural networks (CNN) are very suitable for applications with image processing, like resolution enhancement of images; but in order to obtain an acceptable result, it is important, not only to define the kind of CNN architecture but the reference set of images to train the model. Our work proposes an alternative to improve the spatial resolution of HR images obtained by Sentinel-2 satellite by using the VHR images from PeruSat1, a peruvian satellite, which serve as the reference for the super-resolution approach implementation based on a Generative Adversarial Network (GAN) model, as an alternative for obtaining VHR images. The VHR PeruSat-1 image dataset is used for the training process of the network. The results obtained were analyzed considering the Peak Signal to Noise Ratios (PSNR) and the Structural Similarity (SSIM). Finally, some visual outcomes, over a given testing dataset, are presented so the performance of the model could be analyzed as well.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1312
Author(s):  
Debapriya Hazra ◽  
Yung-Cheol Byun

Video super-resolution has become an emerging topic in the field of machine learning. The generative adversarial network is a framework that is widely used to develop solutions for low-resolution videos. Video surveillance using closed-circuit television (CCTV) is significant in every field, all over the world. A common problem with CCTV videos is sudden video loss or poor quality. In this paper, we propose a generative adversarial network that implements spatio-temporal generators and discriminators to enhance real-time low-resolution CCTV videos to high-resolution. The proposed model considers both foreground and background motion of a CCTV video and effectively models the spatial and temporal consistency from low-resolution video frames to generate high-resolution videos. Quantitative and qualitative experiments on benchmark datasets, including Kinetics-700, UCF101, HMDB51 and IITH_Helmet2, showed that our model outperforms the existing GAN models for video super-resolution.


2020 ◽  
Author(s):  
Michael C. Dimmick ◽  
Leo J. Lee ◽  
Brendan J. Frey

AbstractMotivationHi-C data has enabled the genome-wide study of chromatin folding and architecture, and has led to important discoveries in the structure and function of chromatin conformation. Here, high resolution data plays a particularly important role as many chromatin substructures such as Topologically Associating Domains (TADs) and chromatin loops cannot be adequately studied with low resolution contact maps. However, the high sequencing costs associated with the generation of high resolution Hi-C data has become an experimental barrier. Data driven machine learning models, which allow low resolution Hi-C data to be computationally enhanced, offer a promising avenue to address this challenge.ResultsBy carefully examining the properties of Hi-C maps and integrating various recent advances in deep learning, we developed a Hi-C Super-Resolution (HiCSR) framework capable of accurately recovering the fine details, textures, and substructures found in high resolution contact maps. This was achieved using a novel loss function tailored to the Hi-C enhancement problem which optimizes for an adversarial loss from a Generative Adversarial Network (GAN), a feature reconstruction loss derived from the latent representation of a denoising autoencoder, and a pixel-wise loss. Not only can the resulting framework generate enhanced Hi-C maps more visually similar to the original high resolution maps, it also excels on a suite of reproducibility metrics produced by members of the ENCODE Consortium compared to existing approaches, including HiCPlus, HiCNN, hicGAN and DeepHiC. Finally, we demonstrate that HiCSR is capable of enhancing Hi-C data across sequencing depth, cell types, and species, recovering biologically significant contact domain boundaries.AvailabilityWe make our implementation available for download at: https://github.com/PSI-Lab/[email protected] informationAvailable Online


2018 ◽  
Vol 246 ◽  
pp. 03040
Author(s):  
Jie Kong ◽  
Congying Wang

In recent years, although Optical Character Recognition (OCR) has made considerable progress, low-resolution text images commonly appearing in many scenarios may still cause errors in recognition. For this problem, the technique of Generative Adversarial Network in super-resolution processing is applied to enhance the resolution of low-quality text images in this study. The principle and the implementation in TensorFlow of this technique are introduced. On this basis, a system is proposed to perform the resolution enhancement and OCR for low-resolution text images. The experimental results indicate that this technique could significantly improve the accuracy, reduce the error rate and false rejection rate of low-resolution text images identification.


2021 ◽  
Vol 13 (21) ◽  
pp. 4254
Author(s):  
Mingyun Wen ◽  
Jisun Park ◽  
Kyungeun Cho

This study focuses on reconstructing accurate meshes with high-resolution textures from single images. The reconstruction process involves two networks: a mesh-reconstruction network and a texture-reconstruction network. The mesh-reconstruction network estimates a deformation map, which is used to deform a template mesh to the shape of the target object in the input image, and a low-resolution texture. We propose reconstructing a mesh with a high-resolution texture by enhancing the low-resolution texture through use of the super-resolution method. The architecture of the texture-reconstruction network is like that of a generative adversarial network comprising a generator and a discriminator. During the training of the texture-reconstruction network, the discriminator must focus on learning high-quality texture predictions and to ignore the difference between the generated mesh and the actual mesh. To achieve this objective, we used meshes reconstructed using the mesh-reconstruction network and textures generated through inverse rendering to generate pseudo-ground-truth images. We conducted experiments using the 3D-Future dataset, and the results prove that our proposed approach can be used to generate improved three-dimensional (3D) textured meshes compared to existing methods, both quantitatively and qualitatively. Additionally, through our proposed approach, the texture of the output image is significantly improved.


Author(s):  
Guoqing Zhang ◽  
Yuhao Chen ◽  
Weisi Lin ◽  
Arun Chandran ◽  
Xuan Jing

As a prevailing task in video surveillance and forensics field, person re-identification (re-ID) aims to match person images captured from non-overlapped cameras. In unconstrained scenarios, person images often suffer from the resolution mismatch problem, i.e., Cross-Resolution Person Re-ID. To overcome this problem, most existing methods restore low resolution (LR) images to high resolution (HR) by super-resolution (SR). However, they only focus on the HR feature extraction and ignore the valid information from original LR images. In this work, we explore the influence of resolutions on feature extraction and develop a novel method for cross-resolution person re-ID called Multi-Resolution Representations Joint Learning (MRJL). Our method consists of a Resolution Reconstruction Network (RRN) and a Dual Feature Fusion Network (DFFN). The RRN uses an input image to construct a HR version and a LR version with an encoder and two decoders, while the DFFN adopts a dual-branch structure to generate person representations from multi-resolution images. Comprehensive experiments on five benchmarks verify the superiority of the proposed MRJL over the relevent state-of-the-art methods.


2021 ◽  
Author(s):  
Jiali Wang ◽  
Zhengchun Liu ◽  
Ian Foster ◽  
Won Chang ◽  
Rajkumar Kettimuthu ◽  
...  

Abstract. This study develops a neural network-based approach for emulating high-resolution modeled precipitation data with comparable statistical properties but at greatly reduced computational cost. The key idea is to use combination of low- and high- resolution simulations to train a neural network to map from the former to the latter. Specifically, we define two types of CNNs, one that stacks variables directly and one that encodes each variable before stacking, and we train each CNN type both with a conventional loss function, such as mean square error (MSE), and with a conditional generative adversarial network (CGAN), for a total of four CNN variants.We compare the four new CNN-derived high-resolution precipitation results with precipitation generated from original high resolution simulations, a bilinear interpolater and the state-of-the-art CNN-based super-resolution (SR) technique. Results show that the SR technique produces results similar to those of the bilinear interpolator with smoother spatial and temporal distributions and smaller data variabilities and extremes than the high resolution simulations. While the new CNNs trained by MSE generate better results over some regions than the interpolator and SR technique do, their predictions are still not as close as ground truth. The CNNs trained by CGAN generate more realistic and physically reasonable results, better capturing not only data variability in time and space but also extremes such as intense and long-lasting storms. The new proposed CNN-based downscaling approach can downscale precipitation from 50 km to 12 km in 14 min for 30 years once the network is trained (training takes 4 hours using 1 GPU), while the conventional dynamical downscaling would take 1 months using 600 CPU cores to generate simulations at the resolution of 12 km over contiguous United States.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 670
Author(s):  
Mingzheng Hou ◽  
Song Liu ◽  
Jiliu Zhou ◽  
Yi Zhang ◽  
Ziliang Feng

Activity recognition is a fundamental and crucial task in computer vision. Impressive results have been achieved for activity recognition in high-resolution videos, but for extreme low-resolution videos, which capture the action information at a distance and are vital for preserving privacy, the performance of activity recognition algorithms is far from satisfactory. The reason is that extreme low-resolution (e.g., 12 × 16 pixels) images lack adequate scene and appearance information, which is needed for efficient recognition. To address this problem, we propose a super-resolution-driven generative adversarial network for activity recognition. To fully take advantage of the latent information in low-resolution images, a powerful network module is employed to super-resolve the extremely low-resolution images with a large scale factor. Then, a general activity recognition network is applied to analyze the super-resolved video clips. Extensive experiments on two public benchmarks were conducted to evaluate the effectiveness of our proposed method. The results demonstrate that our method outperforms several state-of-the-art low-resolution activity recognition approaches.


2021 ◽  
Vol 13 (13) ◽  
pp. 2614
Author(s):  
Yu Tao ◽  
Siting Xiong ◽  
Rui Song ◽  
Jan-Peter Muller

Higher spatial resolution imaging data are considered desirable in many Earth observation applications. In this work, we propose and demonstrate the TARSGAN (learning Terrestrial image deblurring using Adaptive weighted dense Residual Super-resolution Generative Adversarial Network) system for Super-resolution Restoration (SRR) of 10 m/pixel Sentinel-2 “true” colour images as well as all the other multispectral bands. In parallel, the ELF (automated image Edge detection and measurements of edge spread function, Line spread function, and Full width at half maximum) system is proposed to achieve automated and precise assessments of the effective resolutions of the input and SRR images. Subsequent ELF measurements of the TARSGAN SRR results suggest an averaged effective resolution enhancement factor of about 2.91 times (equivalent to ~3.44 m/pixel for the 10 m/pixel bands) given a nominal SRR upscaling factor of 4 times. Several examples are provided for different types of scenes from urban landscapes to agricultural scenes and sea-ice floes.


Sign in / Sign up

Export Citation Format

Share Document